Photo AI

Given that $y = \csc(\theta)$ 15 (a) (i) Express $y$ in terms of $\sin(\theta)$ - AQA - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Question icon

Question 15

Given-that--$y-=-\csc(\theta)$--15-(a)-(i)-Express-$y$-in-terms-of-$\sin(\theta)$-AQA-A-Level Maths Pure-Question 15-2022-Paper 1.png

Given that $y = \csc(\theta)$ 15 (a) (i) Express $y$ in terms of $\sin(\theta)$. 15 (a) (ii) Hence, prove that \[ \frac{dy}{d\theta} = -\csc(\theta) \cot(\theta)... show full transcript

Worked Solution & Example Answer:Given that $y = \csc(\theta)$ 15 (a) (i) Express $y$ in terms of $\sin(\theta)$ - AQA - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Step 1

Express $y$ in terms of $\sin(\theta)$

96%

114 rated

Answer

We know that the cosecant function is the reciprocal of the sine function, hence:

y=csc(θ)=1sin(θ).y = \csc(\theta) = \frac{1}{\sin(\theta)}.

Step 2

Prove that \( \frac{dy}{d\theta} = -\csc(\theta) \cot(\theta) \)

99%

104 rated

Answer

To differentiate yy with respect to θ\theta, we can use the formula for the derivative of the cosecant function:

dydθ=csc(θ)cot(θ).\frac{dy}{d\theta} = - \csc(\theta) \cot(\theta).

This can be shown using the quotient rule or chain rule:

  • Using the chain rule, since y=1sin(θ)y = \frac{1}{\sin(\theta)}: dydθ=1sin2(θ)cos(θ)=csc(θ)cot(θ).\frac{dy}{d\theta} = -\frac{1}{\sin^2(\theta)} \cdot \cos(\theta) = -\csc(\theta) \cot(\theta).

Step 3

Show that \( \frac{\sqrt{y^2 - 1}}{y} = \cos(\theta) \; \text{for } 0 < \theta < \frac{\pi}{2} \)

96%

101 rated

Answer

Using the identity csc2(θ)=1+cot2(θ)\csc^2(\theta) = 1 + \cot^2(\theta): y2=csc2(θ)=1+cot2(θ)  y21=cot2(θ).y^2 = \csc^2(\theta) = 1 + \cot^2(\theta) \Rightarrow\; y^2 - 1 = \cot^2(\theta).

Now substituting back into the expression: y21y=cot(θ)csc(θ)=cos(θ).\frac{\sqrt{y^2 - 1}}{y} = \frac{\cot(\theta)}{\csc(\theta)} = \cos(\theta).

Step 4

Use the substitution \( x = 2 \csc(u) \) to show that \( \int \frac{1}{x^2 \sqrt{2^2 - 4}} \, dx \) can be written as \( k \int \sin(u) \, du \)

98%

120 rated

Answer

First, we differentiate the substitution: dx=2csc(u)cot(u)du.dx = -2 \csc(u) \cot(u) \, du.

Substitute for xx in the integral: 14csc2(u)224(2csc(u)cot(u)du)=csc(u)cot(u)44du.\int \frac{1}{4 \csc^2(u) \sqrt{2^2 - 4}} ( -2 \csc(u) \cot(u) \, du) = -\int \frac{\csc(u) \cot(u)}{\sqrt{4-4}} \, du.

The integral simplifies to: ksin(u)du,k\int \sin(u) \, du, with k=14k = -\frac{1}{4} after simplifying the constant multipliers.

Step 5

Hence, show that \( \int \frac{1}{2 \sqrt{2^2 - 4}} \, dx = \frac{\sqrt{x^2 - 4}}{4x} + c \)

97%

117 rated

Answer

To compute the integral, 12224dx\int \frac{1}{2 \sqrt{2^2 - 4}} \, dx we can refer back to our earlier result, obtaining:

Using the evaluations, we can find that: 14sin(u)=x244x+c.\frac{1}{4} \cdot \sin(u) = \frac{\sqrt{x^2 - 4}}{4x} + c.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;