Photo AI

Given that $y = ext{cosec } \theta$ (a)(i) Express $y$ in terms of $ ext{sin } \theta$ - AQA - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Question icon

Question 15

Given-that--$y-=--ext{cosec-}-\theta$--(a)(i)-Express-$y$-in-terms-of-$-ext{sin-}-\theta$-AQA-A-Level Maths Pure-Question 15-2022-Paper 1.png

Given that $y = ext{cosec } \theta$ (a)(i) Express $y$ in terms of $ ext{sin } \theta$. (a)(ii) Hence, prove that \[ \frac{dy}{d\theta} = -\text{cosec } \theta ... show full transcript

Worked Solution & Example Answer:Given that $y = ext{cosec } \theta$ (a)(i) Express $y$ in terms of $ ext{sin } \theta$ - AQA - A-Level Maths Pure - Question 15 - 2022 - Paper 1

Step 1

Express $y$ in terms of $ ext{sin } \theta$

96%

114 rated

Answer

From the definition of cosecant:

y=cosec θ=1sinθy = \text{cosec } \theta = \frac{1}{\sin \theta}

Step 2

Hence, prove that $\frac{dy}{d\theta} = -\text{cosec } \theta \cot \theta$

99%

104 rated

Answer

Using the derivative of yy:

  1. Start with y=1sinθy = \frac{1}{\sin \theta}.

  2. Applying the quotient rule or chain rule for derivatives:

    dydθ=1sin2θddθsinθ\frac{dy}{d\theta} = -\frac{1}{\sin^2 \theta} \cdot \frac{d}{d\theta} \sin \theta =1sin2θcosθ= -\frac{1}{\sin^2 \theta} \cdot \cos \theta =cosec θcotθ= -\text{cosec } \theta \cot \theta

Step 3

Show that $\frac{\sqrt{y^2 - 1}}{y} = \cos \theta$ for $0 < \theta < \frac{\pi}{2}$

96%

101 rated

Answer

Using the identity of cosecant:

  1. From y=cosec θy = \text{cosec } \theta, we know y=1sinθy = \frac{1}{\sin \theta}, which gives: y2=1sin2θy^2 = \frac{1}{\sin^2 \theta}
  2. Therefore: y21=1sin2θ1=1sin2θsin2θ=cos2θsin2θy^2 - 1 = \frac{1}{\sin^2 \theta} - 1 = \frac{1 - \sin^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta}
  3. Taking the square root: y21=cosθsinθ=cotθ\sqrt{y^2 - 1} = \frac{\cos \theta}{\sin \theta} = \cot \theta
  4. Substituting back gives: y21y=cotθcosec θ=cosθ\frac{\sqrt{y^2 - 1}}{y} = \frac{\cot \theta}{\text{cosec } \theta} = \cos \theta

Step 4

Use the substitution $x = 2 \text{cosec } u$ to show that $\int \frac{1}{x^2 \sqrt{2^2 - 4}} \, dx$ can be written as $k \int \sin u \, du$

98%

120 rated

Answer

Using the substitution:

  1. Calculate: dx=2cosec ucotududx = -2 \text{cosec } u \cot u \, du
  2. Substitute: 1(2cosec u)244(2cosec ucotu)du\int \frac{1}{(2 \text{cosec } u)^2 \sqrt{4 - 4}} (-2 \text{cosec } u \cot u) \, du This simplifies to: 2cosec ucotu4cosec2udu=ksinudu\int \frac{-2 \text{cosec } u \cot u}{4 \text{cosec}^2 u} \, du = k \int \sin u \, du where kk must be determined.

Step 5

Hence, show that $\int \frac{1}{\sqrt{2^2 - 4}} \, dx = \frac{\sqrt{x^2 - 4}}{4} + c$

97%

117 rated

Answer

  1. From the previous results: sinudu=cosu\int \sin u \, du = -\cos u
  2. Deducing cosu\cos u in terms of xx: cosu=x242\cos u = \frac{\sqrt{x^2 - 4}}{2}
  3. Thus, integrating gives: 1224dx=x244+c\int \frac{1}{\sqrt{2^2 - 4}} \, dx = \frac{\sqrt{x^2 - 4}}{4} + c

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;