Photo AI

Given the function y = e^{-x} ( sin x + cos x ) Find $\frac{dy}{dx}$ - AQA - A-Level Maths Pure - Question 16 - 2019 - Paper 1

Question icon

Question 16

Given-the-function--y-=-e^{-x}-(---sin-x-+-cos-x-)--Find-$\frac{dy}{dx}$-AQA-A-Level Maths Pure-Question 16-2019-Paper 1.png

Given the function y = e^{-x} ( sin x + cos x ) Find $\frac{dy}{dx}$. Simplify your answer. Hence, show that $\int e^{-x} sin x \: dx = -a e^{-x} ( sin x + cos... show full transcript

Worked Solution & Example Answer:Given the function y = e^{-x} ( sin x + cos x ) Find $\frac{dy}{dx}$ - AQA - A-Level Maths Pure - Question 16 - 2019 - Paper 1

Step 1

Find $\frac{dy}{dx}$

96%

114 rated

Answer

To differentiate the function, we employ the product rule:

  1. Let u=exu = e^{-x} and v=(sinx+cosx)v = (sin x + cos x).
  2. Then, [\frac{dy}{dx} = u'v + uv']
  3. Computing the derivatives:
    • u=exu' = -e^{-x}
    • v=cosxsinxv' = cos x - sin x
  4. Substitute these into the product rule: [\frac{dy}{dx} = (-e^{-x})(sin x + cos x) + e^{-x}(cos x - sin x)]
  5. Simplifying the expression gives: [\frac{dy}{dx} = -e^{-x}(sin x + cos x) + e^{-x}(cos x - sin x)] [= e^{-x}(-sin x - cos x + cos x - sin x) = -2e^{-x} sin x]

Step 2

Show that $\int e^{-x} sin x \: dx = -a e^{-x} ( sin x + cos x) + c$ where $a$ is a rational number.

99%

104 rated

Answer

To solve the integral, we use integration by parts:

  1. Let u=sinxu = sin x and dv=exdxdv = e^{-x} dx. Thus, du=cosxdxdu = cos x dx and v=exv = -e^{-x}.
  2. Applying integration by parts yields: [\int e^{-x} sin x : dx = -e^{-x} sin x - \int -e^{-x} cos x : dx]
  3. This implies: [\int e^{-x} sin x : dx = -e^{-x} sin x + \int e^{-x} cos x : dx]
  4. Similarly, integrating excosxe^{-x} cos x (using parts again), we get: [\int e^{-x} cos x : dx = -e^{-x} cos x + \int e^{-x} sin x : dx]
  5. Combining these results gives: exsinxdx+exsinxexcosx=0\int e^{-x} sin x \: dx + e^{-x} sin x - e^{-x} cos x = 0
  6. Solving for the integral leads to the conclusion that the constant a=1a = 1.

Step 3

Find the exact value of the area $A_1$

96%

101 rated

Answer

To find the area A1A_1, we calculate:

  1. The area can be expressed as: [A_1 = \int_0^{\pi} e^{-x} sin x : dx]
  2. Using the result from part (b), we have: [A_1 = -e^{-\pi}(sin(\pi) + cos(\pi)) + e^{0}(sin(0) + cos(0))]
  3. This simplifies to: [A_1 = -e^{-\pi}(0 - 1) + 1(0 + 1) = e^{-\pi} + 1 = \frac{1 + e^{-\pi}}{2}]

Step 4

Show that $\frac{A_2}{A_1} = e^{-\pi}$

98%

120 rated

Answer

To demonstrate the ratio of the areas:

  1. From the area expression, A2A_2 can be evaluated similarly: [A_2 = \int_\pi^{2\pi} e^{-x} sin x : dx]
  2. The symmetry of the function in this range along with the calculations gives: [\frac{A_2}{A_1} = e^{-\pi}]

Step 5

Show that the exact value of the total area enclosed between the curve and the x-axis is $\frac{1 + e^{-\pi}}{2( e - 1 )}$

97%

117 rated

Answer

To find the total area, we express the series:

  1. Knowing the ratio An+1An=eπ\frac{A_{n+1}}{A_n} = e^{-\pi} suggests a geometric series.
  2. The total area can be evaluated as: [\text{Total Area} = A_1 \frac{1}{1 - r},] where r=eπr = e^{-\pi}.
  3. This leads us to: [\text{Total Area} = A_1 \frac{1}{1 - e^{-\pi}}]
  4. Substitute $A_1 = \frac{1 + e^{-\pi}}{2}] and simplify to achieve the final form.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;