Photo AI

8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \) - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 1

Question icon

Question 8

8-(a)-Given-that-$u-=-2^x$,-write-down-an-expression-for-\(-\frac{du}{dx}-\)-AQA-A-Level Maths Pure-Question 8-2017-Paper 1.png

8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \). 8 (b) Find the exact value of \( \int_{0}^{2} \sqrt{3 + 2x} \, dx \) Fully justify yo... show full transcript

Worked Solution & Example Answer:8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \) - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 1

Step 1

Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \)

96%

114 rated

Answer

To find the derivative of ( u = 2^x ), we can use the rule for differentiating exponential functions:

dudx=2xln(2)\frac{du}{dx} = 2^x \ln(2)

Step 2

Find the exact value of \( \int_{0}^{2} \sqrt{3 + 2x} \, dx \)

99%

104 rated

Answer

First, we make a substitution to simplify the integral. Let:

t=3+2xt = 3 + 2x

Then:

ightarrow dx = \frac{dt}{2}$$ Next, we will change the limits of integration. When \( x = 0 \): $$t = 3 + 2(0) = 3$$ When \( x = 2 \): $$t = 3 + 2(2) = 7$$ Now we can rewrite the integral: $$I = \int_{3}^{7} \sqrt{t} \cdot \frac{1}{2} \, dt$$ This simplifies to: $$I = \frac{1}{2} \int_{3}^{7} t^{\frac{1}{2}} \, dt$$ We can now integrate \( t^{\frac{1}{2}} \): $$= \frac{1}{2} \left[ \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right]_3^7$$ This gives us: $$= \frac{1}{3} \left[ t^{\frac{3}{2}} \right]_3^7 = \frac{1}{3} \left( 7^{\frac{3}{2}} - 3^{\frac{3}{2}} \right)$$ Finally, calculating the values: \( 7^{\frac{3}{2}} = 7 \sqrt{7} \) and \( 3^{\frac{3}{2}} = 3 \sqrt{3} \), so: $$= \frac{1}{3} (7 \sqrt{7} - 3 \sqrt{3})$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;