8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \) - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 1
Question 8
8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \).
8 (b) Find the exact value of \( \int_{0}^{2} \sqrt{3 + 2x} \, dx \)
Fully justify yo... show full transcript
Worked Solution & Example Answer:8 (a) Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \) - AQA - A-Level Maths Pure - Question 8 - 2017 - Paper 1
Step 1
Given that $u = 2^x$, write down an expression for \( \frac{du}{dx} \)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the derivative of ( u = 2^x ), we can use the rule for differentiating exponential functions:
dxdu=2xln(2)
Step 2
Find the exact value of \( \int_{0}^{2} \sqrt{3 + 2x} \, dx \)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, we make a substitution to simplify the integral. Let:
t=3+2x
Then:
ightarrow dx = \frac{dt}{2}$$
Next, we will change the limits of integration. When \( x = 0 \):
$$t = 3 + 2(0) = 3$$
When \( x = 2 \):
$$t = 3 + 2(2) = 7$$
Now we can rewrite the integral:
$$I = \int_{3}^{7} \sqrt{t} \cdot \frac{1}{2} \, dt$$
This simplifies to:
$$I = \frac{1}{2} \int_{3}^{7} t^{\frac{1}{2}} \, dt$$
We can now integrate \( t^{\frac{1}{2}} \):
$$= \frac{1}{2} \left[ \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right]_3^7$$
This gives us:
$$= \frac{1}{3} \left[ t^{\frac{3}{2}} \right]_3^7 = \frac{1}{3} \left( 7^{\frac{3}{2}} - 3^{\frac{3}{2}} \right)$$
Finally, calculating the values:
\( 7^{\frac{3}{2}} = 7 \sqrt{7} \) and \( 3^{\frac{3}{2}} = 3 \sqrt{3} \), so:
$$= \frac{1}{3} (7 \sqrt{7} - 3 \sqrt{3})$$