Photo AI

8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ - AQA - A-Level Maths Pure - Question 8 - 2018 - Paper 3

Question icon

Question 8

8-(a)-Prove-the-identity--$$\frac{\sin-2x}{1-+-\tan^2-x}-=-2-\sin-x-\cos^3-x$$--8-(b)-Hence-find--$$\int-\frac{4-\sin-4\theta}{1-+-\tan^2-2\theta}-d\theta$$-AQA-A-Level Maths Pure-Question 8-2018-Paper 3.png

8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$

Worked Solution & Example Answer:8 (a) Prove the identity $$\frac{\sin 2x}{1 + \tan^2 x} = 2 \sin x \cos^3 x$$ 8 (b) Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$ - AQA - A-Level Maths Pure - Question 8 - 2018 - Paper 3

Step 1

Hence find $$\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta$$

96%

114 rated

Answer

To solve the given integral, we first rewrite the integrand:

We can use the identity for (\tan^2) to express the integral as follows:

4sin4θ1+tan22θdθ=4sin4θcos22θdθ\int \frac{4 \sin 4\theta}{1 + \tan^2 2\theta} d\theta = \int 4 \sin 4\theta \cos^2 2\theta d\theta

Let (u = \cos 2\theta), then:\n(du = -2 \sin 2\theta d\theta) or (d\theta = -\frac{du}{2 \sin 2\theta}).

Substituting:

=2sin4θu2dθ= \int -2 \sin 4\theta u^2 d\theta

Rewriting (\sin 4\theta = 2 \sin 2\theta \cos 2\theta = -2 \sin 2\theta (1-u^2)), we get:

=4u2(du2(1u2))= \int -4u^2 (-\frac{du}{2(1-u^2)})

Solving this integral leads to the final answer being of the form:

=13u3+C= -\frac{1}{3}u^3 + C

Replacing back for u:

=13cos32θ+C= -\frac{1}{3}\cos^3 2\theta + C.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;