Photo AI
Question 15
The height $x$ metres, of a column of water in a fountain display satisfies the differential equation $$\frac{dx}{dr} = \frac{8\sin 2t}{3\sqrt{x}}$$, where $t$ is th... show full transcript
Step 1
Answer
To solve the differential equation, we first separate the variables: .
Next, we integrate both sides:
Step 2
Answer
To find the maximum height of the column of water, we analyze the function:
The maximum occurs when $, \cos 2t = -1,, \therefore \max, x = \left(2 - 2(-1)\right)^{\frac{2}{3}} = (4)^{\frac{2}{3}} = 4^{\frac{2}{3}} = \frac{4^2}{4} = \frac{16}{4} = 4.$$
Thus, the maximum height is:
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Proof
Maths Pure - AQA
1.2 Proof by Contradiction
Maths Pure - AQA
2.1 Laws of Indices & Surds
Maths Pure - AQA
2.2 Quadratics
Maths Pure - AQA
2.3 Simultaneous Equations
Maths Pure - AQA
2.4 Inequalities
Maths Pure - AQA
2.5 Polynomials
Maths Pure - AQA
2.6 Rational Expressions
Maths Pure - AQA
2.7 Graphs of Functions
Maths Pure - AQA
2.8 Functions
Maths Pure - AQA
2.9 Transformations of Functions
Maths Pure - AQA
2.10 Combinations of Transformations
Maths Pure - AQA
2.11 Partial Fractions
Maths Pure - AQA
2.12 Modelling with Functions
Maths Pure - AQA
2.13 Further Modelling with Functions
Maths Pure - AQA
3.1 Equation of a Straight Line
Maths Pure - AQA
3.2 Circles
Maths Pure - AQA
4.1 Binomial Expansion
Maths Pure - AQA
4.2 General Binomial Expansion
Maths Pure - AQA
4.3 Arithmetic Sequences & Series
Maths Pure - AQA
4.4 Geometric Sequences & Series
Maths Pure - AQA
4.5 Sequences & Series
Maths Pure - AQA
4.6 Modelling with Sequences & Series
Maths Pure - AQA
5.1 Basic Trigonometry
Maths Pure - AQA
5.2 Trigonometric Functions
Maths Pure - AQA
5.3 Trigonometric Equations
Maths Pure - AQA
5.4 Radian Measure
Maths Pure - AQA
5.5 Reciprocal & Inverse Trigonometric Functions
Maths Pure - AQA
5.6 Compound & Double Angle Formulae
Maths Pure - AQA
5.7 Further Trigonometric Equations
Maths Pure - AQA
5.8 Trigonometric Proof
Maths Pure - AQA
5.9 Modelling with Trigonometric Functions
Maths Pure - AQA
6.1 Exponential & Logarithms
Maths Pure - AQA
6.2 Laws of Logarithms
Maths Pure - AQA
6.3 Modelling with Exponentials & Logarithms
Maths Pure - AQA
7.1 Differentiation
Maths Pure - AQA
7.2 Applications of Differentiation
Maths Pure - AQA
7.3 Further Differentiation
Maths Pure - AQA
7.4 Further Applications of Differentiation
Maths Pure - AQA
7.5 Implicit Differentiation
Maths Pure - AQA
8.1 Integration
Maths Pure - AQA
8.2 Further Integration
Maths Pure - AQA
8.3 Differential Equations
Maths Pure - AQA
9.1 Parametric Equations
Maths Pure - AQA
10.1 Solving Equations
Maths Pure - AQA
10.2 Modelling involving Numerical Methods
Maths Pure - AQA
11.1 Vectors in 2 Dimensions
Maths Pure - AQA
11.2 Vectors in 3 Dimensions
Maths Pure - AQA