Integrating the left side gives:
r=∫x2lnxdx
For the right side, we use integration by parts where:
- Let u=lnx and dv=x2dx, so du=x1dx and v=−x1.
Using integration by parts:
r=−xlnx−∫−x1⋅x1dx=−xlnx+∫x21dx
Now integrating ∫x21dx gives:
∫x21dx=−x1+C
Thus, we find:
r=−xlnx−x1+C