Photo AI

Which particle has the smallest de Broglie wavelength? A an electron moving at 4 × 10³ m s⁻¹ B a proton moving at 4 × 10³ m s⁻¹ C an electron moving at 8 × 10⁵ m s⁻¹ D a proton moving at 8 × 10⁵ m s⁻¹ - AQA - A-Level Physics - Question 17 - 2022 - Paper 1

Question icon

Question 17

Which-particle-has-the-smallest-de-Broglie-wavelength?--A-an-electron-moving-at-4-×-10³-m-s⁻¹--B-a-proton-moving-at-4-×-10³-m-s⁻¹--C-an-electron-moving-at-8-×-10⁵-m-s⁻¹--D-a-proton-moving-at-8-×-10⁵-m-s⁻¹-AQA-A-Level Physics-Question 17-2022-Paper 1.png

Which particle has the smallest de Broglie wavelength? A an electron moving at 4 × 10³ m s⁻¹ B a proton moving at 4 × 10³ m s⁻¹ C an electron moving at 8 × 10⁵ m ... show full transcript

Worked Solution & Example Answer:Which particle has the smallest de Broglie wavelength? A an electron moving at 4 × 10³ m s⁻¹ B a proton moving at 4 × 10³ m s⁻¹ C an electron moving at 8 × 10⁵ m s⁻¹ D a proton moving at 8 × 10⁵ m s⁻¹ - AQA - A-Level Physics - Question 17 - 2022 - Paper 1

Step 1

Identify the concept of de Broglie wavelength

96%

114 rated

Answer

The de Broglie wavelength au au is given by the formula: au=hp au = \frac{h}{p} where hh is Planck's constant and pp is the momentum of the particle. The momentum can be calculated as the product of the mass and velocity of the particle: p=mvp = mv.

Step 2

Calculate the de Broglie wavelength for each particle

99%

104 rated

Answer

  1. Electron moving at 4 × 10³ m s⁻¹ (mass m9.11×1031m \approx 9.11 \times 10^{-31} kg): p=m×v=9.11×1031 kg×4×103 m s13.644×1027 kg m s1p = m \times v = 9.11 \times 10^{-31} \text{ kg} \times 4 \times 10^{3} \text{ m s}^{-1} \approx 3.644 \times 10^{-27} \text{ kg m s}^{-1} τ6.626×1034 J s3.644×1027 kg m s11.82×107 m\tau \approx \frac{6.626 \times 10^{-34} \text{ J s}}{3.644 \times 10^{-27} \text{ kg m s}^{-1}} \approx 1.82 \times 10^{-7} \text{ m}

  2. Proton moving at 4 × 10³ m s⁻¹ (mass m1.67×1027m \approx 1.67 \times 10^{-27} kg): p=m×v=1.67×1027 kg×4×103 m s16.68×1024 kg m s1p = m \times v = 1.67 \times 10^{-27} \text{ kg} \times 4 \times 10^{3} \text{ m s}^{-1} \approx 6.68 \times 10^{-24} \text{ kg m s}^{-1} τ6.626×1034 J s6.68×1024 kg m s19.92×1011 m\tau \approx \frac{6.626 \times 10^{-34} \text{ J s}}{6.68 \times 10^{-24} \text{ kg m s}^{-1}} \approx 9.92 \times 10^{-11} \text{ m}

  3. Electron moving at 8 × 10⁵ m s⁻¹: p=9.11×1031×8×1057.29×1025 kg m s1p = 9.11 \times 10^{-31} \times 8 \times 10^{5} \approx 7.29 \times 10^{-25} \text{ kg m s}^{-1} τ6.626×10347.29×10259.07×1010 m\tau \approx \frac{6.626 \times 10^{-34}}{7.29 \times 10^{-25}} \approx 9.07 \times 10^{-10} \text{ m}

  4. Proton moving at 8 × 10⁵ m s⁻¹: p=1.67×1027×8×1051.34×1021 kg m s1p = 1.67 \times 10^{-27} \times 8 \times 10^{5} \approx 1.34 \times 10^{-21} \text{ kg m s}^{-1} τ6.626×10341.34×10214.94×1013 m\tau \approx \frac{6.626 \times 10^{-34}}{1.34 \times 10^{-21}} \approx 4.94 \times 10^{-13} \text{ m}

Step 3

Compare the calculated wavelengths

96%

101 rated

Answer

The de Broglie wavelengths calculated are approximately:

  • Electron at 4 × 10³ m s⁻¹: 1.82×1071.82 \times 10^{-7} m
  • Proton at 4 × 10³ m s⁻¹: 9.92×10119.92 \times 10^{-11} m
  • Electron at 8 × 10⁵ m s⁻¹: 9.07×10109.07 \times 10^{-10} m
  • Proton at 8 × 10⁵ m s⁻¹: 4.94×10134.94 \times 10^{-13} m

Thus, the particle with the smallest de Broglie wavelength is D a proton moving at 8 × 10⁵ m s⁻¹.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;