Photo AI
Question 17
A diffraction grating has 500 lines per mm. When monochromatic light is incident normally on the grating the third-order spectral line is formed at an angle of 60° f... show full transcript
Step 1
Answer
To find the wavelength of the monochromatic light, we can use the diffraction grating equation:
Where:
Calculate : Given that there are 500 lines per mm, the distance between grating lines, , can be calculated as:
Use the Diffraction Equation: Plugging in the known values into the diffraction equation:
Calculate : This gives:
Rearranging the Equation for : Now we can rearrange the equation to find :
Convert to nm: Calculating this gives us:
By selecting the closest option from the given choices, we find the wavelength of the monochromatic light is approximately 580 nm, thus the correct answer is B.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Use of SI Units & Their Prefixes
Physics - AQA
Limitation of Physical Measurements
Physics - AQA
Atomic Structure & Decay Equations
Physics - AQA
Classification of Particles
Physics - AQA
Conservation Laws & Particle Interactions
Physics - AQA
The Photoelectric Effect
Physics - AQA
Energy Levels & Photon Emission
Physics - AQA
Longitudinal & Transverse Waves
Physics - AQA
Stationary Waves
Physics - AQA
Interference
Physics - AQA
Diffraction
Physics - AQA
Refraction
Physics - AQA
Scalars & Vectors
Physics - AQA
Moments
Physics - AQA
Equations of Motion
Physics - AQA
Newtons Laws of Motion
Physics - AQA
Linear Momentum & Conservation
Physics - AQA
Work, Energy & Power
Physics - AQA
Bulk Properties of Solids
Physics - AQA
The Young Modulus
Physics - AQA
Current–Voltage Characteristics
Physics - AQA
Resistance & Resistivity
Physics - AQA
Circuits & The Potential Divider
Physics - AQA
Electromotive Force & Internal Resistance
Physics - AQA
Circular Motion
Physics - AQA
Simple Harmonic Motion
Physics - AQA
Forced Vibrations & Resonance
Physics - AQA
Thermal Energy Transfer
Physics - AQA
Ideal Gases
Physics - AQA
Molecular Kinetic Theory Model
Physics - AQA
Gravitational Fields
Physics - AQA
Gravitational Potential
Physics - AQA
Orbits of Planets & Satellites
Physics - AQA
Electric Fields
Physics - AQA
Electric Potential
Physics - AQA
Capacitance
Physics - AQA
Capacitor Charge & Discharge
Physics - AQA
Magnetic Fields
Physics - AQA
Electromagnetic Induction
Physics - AQA
Alternating Currents & Transformers
Physics - AQA
Alpha, Beta & Gamma Radiation
Physics - AQA
Radioactive Decay
Physics - AQA
Nuclear Instability & Radius
Physics - AQA
Nuclear Fusion & Fission
Physics - AQA
Telescopes
Physics - AQA
Classification of Stars
Physics - AQA
Cosmology
Physics - AQA
Rotational Dynamics
Physics - AQA
Thermodynamics & Engines
Physics - AQA
The Discovery of the Electron
Physics - AQA
Special Relativity
Physics - AQA