Photo AI

Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment - AQA - A-Level Physics - Question 4 - 2019 - Paper 7

Question icon

Question 4

Table-1-shows-data-of-speed-$v$-and-kinetic-energy-$E_k$-for-electrons-from-a-modern-version-of-the-Bertozzi-experiment-AQA-A-Level Physics-Question 4-2019-Paper 7.png

Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment. Table 1 | $v / 10^8 \, \mathrm{m \, s^{-1}... show full transcript

Worked Solution & Example Answer:Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment - AQA - A-Level Physics - Question 4 - 2019 - Paper 7

Step 1

Deduce whether the data in Table 1 is consistent with this prediction.

96%

114 rated

Answer

To determine if the data is consistent with the prediction that Ekv2E_k \propto v^2, we can analyze at least two data points from the table and compute the ratio of EkE_k to v2v^2 for these values:

  1. For v=2.60×108ms1v = 2.60 \times 10^8 \, \mathrm{m \, s^{-1}},
    Ek=0.5MeVEk=0.5×1.6×1013J=8.0×1014J(conversion to J)E_k = 0.5 \mathrm{MeV} \Rightarrow E_k = 0.5 \times 1.6 \times 10^{-13} J = 8.0 \times 10^{-14} J \quad \text{(conversion to J)}
    v2=(2.60×108)26.76×1016m2s2v^2 = (2.60 \times 10^8)^2 \approx 6.76 \times 10^{16} \mathrm{m^2 \, s^{-2}}
    Therefore,
    Ekv2=8.0×10146.76×10161.18×1030\frac{E_k}{v^2} = \frac{8.0 \times 10^{-14}}{6.76 \times 10^{16}} \approx 1.18 \times 10^{-30}

  2. For v=2.73×108ms1v = 2.73 \times 10^8 \, \mathrm{m \, s^{-1}},
    Ek=0.7MeVEk=0.7×1.6×1013J=1.12×1013JE_k = 0.7 \mathrm{MeV} \Rightarrow E_k = 0.7 \times 1.6 \times 10^{-13} J = 1.12 \times 10^{-13} J
    v2=(2.73×108)27.45×1016m2s2v^2 = (2.73 \times 10^8)^2 \approx 7.45 \times 10^{16} \mathrm{m^2 \, s^{-2}}
    Therefore,
    Ekv2=1.12×10137.45×10161.50×1030\frac{E_k}{v^2} = \frac{1.12 \times 10^{-13}}{7.45 \times 10^{16}} \approx 1.50 \times 10^{-30}

Since both calculations yield similar constants, we can conclude that the data in Table 1 is consistent with the prediction that Ekv2E_k \propto v^2.

Step 2

Discuss how Einstein’s theory of special relativity explains the data in Table 1.

99%

104 rated

Answer

Einstein's theory of special relativity introduces the concept of relativistic mass, which changes as an object approaches the speed of light, cc. As velocity increases, so does the kinetic energy, following the relation:

Ek=γm0c2m0c2E_k = \gamma m_0 c^2 - m_0 c^2

where γ=11(v2/c2)\gamma = \frac{1}{\sqrt{1 - (v^2/c^2)}} is the Lorentz factor and m0m_0 is the rest mass. For low speeds, this leads to the classical approximation Ek12mv2E_k \approx \frac{1}{2} m v^2, but as vv approaches cc, the increase in kinetic energy becomes nonlinear.

In the data from Table 1, we see kinetic energies that don’t align with classical predictions as the speeds increase. For example, at v=2.99×108ms1v = 2.99 \times 10^8 \, \mathrm{m \, s^{-1}}, the kinetic energy vastly exceeds what would be predicted classically, demonstrating the need for relativistic considerations. Einstein's theory effectively accounts for the differences, illustrating that at high velocities, mass and energy behave in ways that classical mechanics cannot accurately describe.

Step 3

Calculate, in J, the kinetic energy of one electron travelling at a speed of 0.95c.

96%

101 rated

Answer

To calculate the kinetic energy of one electron travelling at 0.95c, we again use the relation from Einstein's theory:

Ek=γm0c2m0c2E_k = \gamma m_0 c^2 - m_0 c^2

  1. First, calculate the rest mass energy of the electron:

    • The rest mass m0m_0 of an electron is approximately 9.11×1031kg9.11 \times 10^{-31} \, \mathrm{kg}. Thus,
      E0=m0c2=9.11×1031×(3.00×108)28.19×1014JE_0 = m_0 c^2 = 9.11 \times 10^{-31} \times (3.00 \times 10^8)^2 \approx 8.19 \times 10^{-14} \, \mathrm{J}
  2. Next, calculate the Lorentz factor for v=0.95cv = 0.95c: γ=11(0.95)22.86\gamma = \frac{1}{\sqrt{1 - (0.95)^2}} \approx 2.86

  3. Finally, using these values: Ek=γm0c2m0c2=(2.86×8.19×1014)(8.19×1014)E_k = \gamma m_0 c^2 - m_0 c^2 = (2.86 \times 8.19 \times 10^{-14}) - (8.19 \times 10^{-14})
    Ek2.36×1013JE_k \approx 2.36 \times 10^{-13} \, \mathrm{J}

Thus, the kinetic energy of one electron travelling at a speed of 0.95c is approximately 2.36×1013J2.36 \times 10^{-13} \, \mathrm{J}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Physics topics to explore

Use of SI Units & Their Prefixes

Physics - AQA

Limitation of Physical Measurements

Physics - AQA

Atomic Structure & Decay Equations

Physics - AQA

Classification of Particles

Physics - AQA

Conservation Laws & Particle Interactions

Physics - AQA

The Photoelectric Effect

Physics - AQA

Energy Levels & Photon Emission

Physics - AQA

Longitudinal & Transverse Waves

Physics - AQA

Stationary Waves

Physics - AQA

Interference

Physics - AQA

Diffraction

Physics - AQA

Refraction

Physics - AQA

Scalars & Vectors

Physics - AQA

Moments

Physics - AQA

Equations of Motion

Physics - AQA

Newtons Laws of Motion

Physics - AQA

Linear Momentum & Conservation

Physics - AQA

Work, Energy & Power

Physics - AQA

Bulk Properties of Solids

Physics - AQA

The Young Modulus

Physics - AQA

Current–Voltage Characteristics

Physics - AQA

Resistance & Resistivity

Physics - AQA

Circuits & The Potential Divider

Physics - AQA

Electromotive Force & Internal Resistance

Physics - AQA

Circular Motion

Physics - AQA

Simple Harmonic Motion

Physics - AQA

Forced Vibrations & Resonance

Physics - AQA

Thermal Energy Transfer

Physics - AQA

Ideal Gases

Physics - AQA

Molecular Kinetic Theory Model

Physics - AQA

Gravitational Fields

Physics - AQA

Gravitational Potential

Physics - AQA

Orbits of Planets & Satellites

Physics - AQA

Electric Fields

Physics - AQA

Electric Potential

Physics - AQA

Capacitance

Physics - AQA

Capacitor Charge & Discharge

Physics - AQA

Magnetic Fields

Physics - AQA

Electromagnetic Induction

Physics - AQA

Alternating Currents & Transformers

Physics - AQA

Alpha, Beta & Gamma Radiation

Physics - AQA

Radioactive Decay

Physics - AQA

Nuclear Instability & Radius

Physics - AQA

Nuclear Fusion & Fission

Physics - AQA

Telescopes

Physics - AQA

Classification of Stars

Physics - AQA

Cosmology

Physics - AQA

Rotational Dynamics

Physics - AQA

Thermodynamics & Engines

Physics - AQA

The Discovery of the Electron

Physics - AQA

Special Relativity

Physics - AQA

;