Photo AI
Question 3
Figure 2 shows a ray of monochromatic green light incident normally on the curved surface of a semicircular glass block. The angle of refraction of the ray at the p... show full transcript
Step 1
Answer
To calculate the angle of incidence, we can apply Snell's law, which states:
Given that:
This allows us to calculate:
Thus, we find that:
So, the angle of incidence is approximately 39 degrees.
Step 2
Answer
Using Snell's law again for the glass-liquid interface:
Here, we know:
Therefore,
Calculate :
Thus, the refractive index of the liquid is approximately 1.36.
Step 3
Answer
At the glass-liquid interface, red light undergoes total internal reflection (TIR) while blue light refracts through. This phenomenon occurs because:
To summarize, the red light maintains its path within the glass, while the blue light bends and passes into the liquid, demonstrating a clear distinction in behavior based on their respective refractive indices.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Use of SI Units & Their Prefixes
Physics - AQA
Limitation of Physical Measurements
Physics - AQA
Atomic Structure & Decay Equations
Physics - AQA
Classification of Particles
Physics - AQA
Conservation Laws & Particle Interactions
Physics - AQA
The Photoelectric Effect
Physics - AQA
Energy Levels & Photon Emission
Physics - AQA
Longitudinal & Transverse Waves
Physics - AQA
Stationary Waves
Physics - AQA
Interference
Physics - AQA
Diffraction
Physics - AQA
Refraction
Physics - AQA
Scalars & Vectors
Physics - AQA
Moments
Physics - AQA
Equations of Motion
Physics - AQA
Newtons Laws of Motion
Physics - AQA
Linear Momentum & Conservation
Physics - AQA
Work, Energy & Power
Physics - AQA
Bulk Properties of Solids
Physics - AQA
The Young Modulus
Physics - AQA
Current–Voltage Characteristics
Physics - AQA
Resistance & Resistivity
Physics - AQA
Circuits & The Potential Divider
Physics - AQA
Electromotive Force & Internal Resistance
Physics - AQA
Circular Motion
Physics - AQA
Simple Harmonic Motion
Physics - AQA
Forced Vibrations & Resonance
Physics - AQA
Thermal Energy Transfer
Physics - AQA
Ideal Gases
Physics - AQA
Molecular Kinetic Theory Model
Physics - AQA
Gravitational Fields
Physics - AQA
Gravitational Potential
Physics - AQA
Orbits of Planets & Satellites
Physics - AQA
Electric Fields
Physics - AQA
Electric Potential
Physics - AQA
Capacitance
Physics - AQA
Capacitor Charge & Discharge
Physics - AQA
Magnetic Fields
Physics - AQA
Electromagnetic Induction
Physics - AQA
Alternating Currents & Transformers
Physics - AQA
Alpha, Beta & Gamma Radiation
Physics - AQA
Radioactive Decay
Physics - AQA
Nuclear Instability & Radius
Physics - AQA
Nuclear Fusion & Fission
Physics - AQA
Telescopes
Physics - AQA
Classification of Stars
Physics - AQA
Cosmology
Physics - AQA
Rotational Dynamics
Physics - AQA
Thermodynamics & Engines
Physics - AQA
The Discovery of the Electron
Physics - AQA
Special Relativity
Physics - AQA