Photo AI

Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment - AQA - A-Level Physics - Question 4 - 2019 - Paper 7

Question icon

Question 4

Table-1-shows-data-of-speed-$v$-and-kinetic-energy-$E_k$-for-electrons-from-a-modern-version-of-the-Bertozzi-experiment-AQA-A-Level Physics-Question 4-2019-Paper 7.png

Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment. **Table 1** | $v / 10^8 ext{ m s}^{-1}$ |... show full transcript

Worked Solution & Example Answer:Table 1 shows data of speed $v$ and kinetic energy $E_k$ for electrons from a modern version of the Bertozzi experiment - AQA - A-Level Physics - Question 4 - 2019 - Paper 7

Step 1

Deduce whether the data in Table 1 are consistent with this prediction.

96%

114 rated

Answer

To determine if the data in Table 1 are consistent with the prediction that Ekproptov2E_k \\propto v^2, we can compare the ratio of kinetic energy to the square of velocity for at least two data sets.

Using the first two rows:

  • For v=2.60×108extms1v = 2.60 \times 10^8 ext{ m s}^{-1}, Ek=0.5extMeVE_k = 0.5 ext{ MeV}:

    Ek=0.5extMeV=0.5×1.6×1013extJ=8.0×1014extJE_k = 0.5 ext{ MeV} = 0.5 \times 1.6 \times 10^{-13} ext{ J} = 8.0 \times 10^{-14} ext{ J}

    v2=(2.60×108)2=6.76×1016extm2exts2v^2 = (2.60 \times 10^8)^2 = 6.76 \times 10^{16} ext{ m}^2 ext{s}^{-2}

  • For v=2.73×108extms1v = 2.73 \times 10^8 ext{ m s}^{-1}, Ek=0.7extMeVE_k = 0.7 ext{ MeV}:

    Ek=0.7extMeV=0.7×1.6×1013extJ=1.12×1013extJE_k = 0.7 ext{ MeV} = 0.7 \times 1.6 \times 10^{-13} ext{ J} = 1.12 \times 10^{-13} ext{ J}

    v2=(2.73×108)2=7.45×1016extm2exts2v^2 = (2.73 \times 10^8)^2 = 7.45 \times 10^{16} ext{ m}^2 ext{s}^{-2}

Now we check the ratios:

Ekv2\frac{E_k}{v^2} For first data point:

8.0×10146.76×10161.18×1030 \frac{8.0 \times 10^{-14}}{6.76 \times 10^{16}} \approx 1.18 \times 10^{-30}

For second data point:

1.12×10137.45×10161.50×1030 \frac{1.12 \times 10^{-13}}{7.45 \times 10^{16}} \approx 1.50 \times 10^{-30}

The ratios are not constant but show a proportional relationship to v2v^2, suggesting that the data in Table 1 are somewhat consistent with the prediction.

Step 2

Discuss how Einstein’s theory of special relativity explains the data in Table 1.

99%

104 rated

Answer

Einstein's theory of special relativity introduces the concept that as an object's speed approaches the speed of light (denoted as cc), its mass effectively increases, leading to higher kinetic energy than classical mechanics would predict. This means that:

  1. Relativistic Kinetic Energy: The kinetic energy of an object according to special relativity is given by:

    Ek=(γ1)m0c2E_k = \left( \gamma - 1 \right) m_0 c^2 where γ=11v2c2\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} is the Lorentz factor and m0m_0 is the rest mass.

  2. Increasing Kinetic Energy: As the speed vv of an electron increases towards cc, γ\gamma significantly increases, resulting in a much greater increase in EkE_k. This explains the steep rise in kinetic energy values observed in Table 1 as speed nears the speed of light.

  3. Divergence from Classical Predictions: The data points in Table 1, particularly at velocities near 2.99×108extms12.99 \times 10^8 ext{ m s}^{-1}, show a greater increase in kinetic energy than what would be predicted by analyzing the square of the velocity, illustrating that classical mechanics fails at relativistic speeds.

Step 3

Calculate, in J, the kinetic energy of one electron travelling at a speed of 0.95c.

96%

101 rated

Answer

To calculate the kinetic energy of an electron traveling at 0.95c0.95c, we first need the rest mass of the electron:

m0=9.11×1031extkgm_0 = 9.11 \times 10^{-31} ext{ kg}

Next, we calculate γ\gamma at this speed:

γ=11(0.95)2=110.9025=10.09753.215\gamma = \frac{1}{\sqrt{1 - (0.95)^2}} = \frac{1}{\sqrt{1 - 0.9025}} = \frac{1}{\sqrt{0.0975}} \approx 3.215

Now we can substitute this value into the relativistic kinetic energy formula:

Ek=(γ1)m0c2E_k = \left( \gamma - 1 \right) m_0 c^2

The speed of light is:

c3.00×108extms1c \approx 3.00 \times 10^8 ext{ m s}^{-1}

So:

Ek=(3.2151)×9.11×1031 kg×(3.00×108extms1)2E_k = \left( 3.215 - 1 \right) \times 9.11 \times 10^{-31} \text{ kg} \times (3.00 \times 10^8 ext{ m s}^{-1})^2

Calculating:

Ek=2.215×9.11×1031×9.00×10161.81×1013extJE_k = 2.215 \times 9.11 \times 10^{-31} \times 9.00 \times 10^{16} \approx 1.81 \times 10^{-13} ext{ J}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Physics topics to explore

Use of SI Units & Their Prefixes

Physics - AQA

Limitation of Physical Measurements

Physics - AQA

Atomic Structure & Decay Equations

Physics - AQA

Classification of Particles

Physics - AQA

Conservation Laws & Particle Interactions

Physics - AQA

The Photoelectric Effect

Physics - AQA

Energy Levels & Photon Emission

Physics - AQA

Longitudinal & Transverse Waves

Physics - AQA

Stationary Waves

Physics - AQA

Interference

Physics - AQA

Diffraction

Physics - AQA

Refraction

Physics - AQA

Scalars & Vectors

Physics - AQA

Moments

Physics - AQA

Equations of Motion

Physics - AQA

Newtons Laws of Motion

Physics - AQA

Linear Momentum & Conservation

Physics - AQA

Work, Energy & Power

Physics - AQA

Bulk Properties of Solids

Physics - AQA

The Young Modulus

Physics - AQA

Current–Voltage Characteristics

Physics - AQA

Resistance & Resistivity

Physics - AQA

Circuits & The Potential Divider

Physics - AQA

Electromotive Force & Internal Resistance

Physics - AQA

Circular Motion

Physics - AQA

Simple Harmonic Motion

Physics - AQA

Forced Vibrations & Resonance

Physics - AQA

Thermal Energy Transfer

Physics - AQA

Ideal Gases

Physics - AQA

Molecular Kinetic Theory Model

Physics - AQA

Gravitational Fields

Physics - AQA

Gravitational Potential

Physics - AQA

Orbits of Planets & Satellites

Physics - AQA

Electric Fields

Physics - AQA

Electric Potential

Physics - AQA

Capacitance

Physics - AQA

Capacitor Charge & Discharge

Physics - AQA

Magnetic Fields

Physics - AQA

Electromagnetic Induction

Physics - AQA

Alternating Currents & Transformers

Physics - AQA

Alpha, Beta & Gamma Radiation

Physics - AQA

Radioactive Decay

Physics - AQA

Nuclear Instability & Radius

Physics - AQA

Nuclear Fusion & Fission

Physics - AQA

Telescopes

Physics - AQA

Classification of Stars

Physics - AQA

Cosmology

Physics - AQA

Rotational Dynamics

Physics - AQA

Thermodynamics & Engines

Physics - AQA

The Discovery of the Electron

Physics - AQA

Special Relativity

Physics - AQA

;