Photo AI
Question 8
The diagram shows two flasks X and Y connected by a thin tube of negligible volume. The flasks contain an ideal gas. The volume of X is twice the volume of Y. When... show full transcript
Step 1
Answer
To find the mass of gas in flask Y, we can use the concept of the ideal gas law, which states that for an ideal gas, the ratio of mass to temperature is constant, provided the volume ratio is known.
Let the volume of flask Y be V. Therefore, the volume of flask X is 2V.
The temperatures are given as follows:
The ratio of the number of moles of gas in each flask, under constant conditions, corresponds to the mass and temperature, which gives us:
( \frac{m_X}{T_X} = \frac{m_Y}{T_Y} )
This means: [ m_Y = m_X \cdot \frac{T_Y}{T_X} \cdot \frac{V_Y}{V_X} ]
Since ( m_X = m ), the mass of gas in Y can be expressed as: [ m_Y = m \cdot \frac{400}{100} \cdot \frac{V}{2V} ]
Simplifying this: [ m_Y = m \cdot 4 \cdot \frac{1}{2} = 2m ]
Thus, the mass of gas in Y is ( 2m ), corresponding to option B.
Report Improved Results
Recommend to friends
Students Supported
Questions answered