Photo AI

By using de Moivre's theorem to express sin 5θ and cos 5θ in terms of sin θ and cos θ, show that $$ \tan 5\theta = \frac{5\tan \theta - 10\tan^3 \theta + \tan^5 \theta}{1 - 10\tan^2 \theta + 5\tan^4 \theta} $$ where t = tan θ - CIE - A-Level Further Maths - Question 10 - 2010 - Paper 1

Question icon

Question 10

By-using-de-Moivre's-theorem-to-express-sin-5θ-and-cos-5θ-in-terms-of-sin-θ-and-cos-θ,-show-that--$$-\tan-5\theta-=-\frac{5\tan-\theta---10\tan^3-\theta-+-\tan^5-\theta}{1---10\tan^2-\theta-+-5\tan^4-\theta}-$$--where-t-=-tan-θ-CIE-A-Level Further Maths-Question 10-2010-Paper 1.png

By using de Moivre's theorem to express sin 5θ and cos 5θ in terms of sin θ and cos θ, show that $$ \tan 5\theta = \frac{5\tan \theta - 10\tan^3 \theta + \tan^5 \th... show full transcript

Worked Solution & Example Answer:By using de Moivre's theorem to express sin 5θ and cos 5θ in terms of sin θ and cos θ, show that $$ \tan 5\theta = \frac{5\tan \theta - 10\tan^3 \theta + \tan^5 \theta}{1 - 10\tan^2 \theta + 5\tan^4 \theta} $$ where t = tan θ - CIE - A-Level Further Maths - Question 10 - 2010 - Paper 1

Step 1

By using de Moivre's theorem to express sin 5θ and cos 5θ

96%

114 rated

Answer

We can express sin and cos in terms of exponential functions using de Moivre's theorem:

(c+is)n=rn(cosnθ+isinnθ)(c + i s)^n = r^n (\cos n\theta + i \sin n\theta)

for ( n = 5 ). This gives:

cos5θ=c510c3s2+5cs4.\cos 5\theta = c^5 - 10c^3s^2 + 5cs^4.

And similarly,

sin5θ=5c4s10c2s3+s5.\sin 5\theta = 5c^4s - 10c^2s^3 + s^5.

Thus,

tan5θ=sin5θcos5θ=5c4s10c2s3+s5c510c3s2+5cs4.\tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta} = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}.

Substituting ( c = \cos\theta ) and ( s = \sin\theta ), we can simplify further to arrive at:

tan5θ=5t10t3+t5110t2+5t4,\tan 5\theta = \frac{5t - 10t^3 + t^5}{1 - 10t^2 + 5t^4},

where ( t = \tan\theta ).

Step 2

Show that the roots of the equation x^4 - 10x^2 + 5 = 0 are tan{nπ/5} for n = 1, 2, 3, 4

99%

104 rated

Answer

Let ( y = x^2 ). The equation transforms to:

y210y+5=0. y^2 - 10y + 5 = 0.

Using the quadratic formula,

y=10±(10)241521=10±100202=10±802=5±25. y = \frac{10 \pm \sqrt{(10)^2 - 4 \cdot 1 \cdot 5}}{2 \, 1} = \frac{10 \pm \sqrt{100 - 20}}{2} = \frac{10 \pm \sqrt{80}}{2} = 5 \pm 2\sqrt{5}.

This gives us:

x2=5+25andx2=525. x^2 = 5 + 2\sqrt{5} \quad \text{and} \quad x^2 = 5 - 2\sqrt{5}.

Thus the solutions for ( x = \tan{n\pi/5} ) for ( n = 1, 2, 3, 4 ).

Step 3

By considering the product of the roots of this equation

96%

101 rated

Answer

Using Vieta's formulas, the product of the roots of the equation ( x^4 - 10x^2 + 5 = 0 ) is given as:

x1x2x3x4=(1)451=5. x_1 x_2 x_3 x_4 = (-1)^4 \cdot \frac{5}{1} = 5.

Knowing the values of the roots as ( \tan{n\pi/5} ), we can express:

anπ/5tan2π/5tan3π/5tan4π/5=5. an{\pi/5} \tan{2\pi/5} \tan{3\pi/5} \tan{4\pi/5} = 5.

Then, utilizing the property that ( \tan{\pi - x} = -\tan{x} ), we can find:

an3π/5=tan2π/5andtan4π/5=tanπ/5. an{3\pi/5} = -\tan{2\pi/5} \quad \text{and} \quad \tan{4\pi/5} = -\tan{\pi/5}.

Therefore, the exact value of ( \tan{\pi/5} \tan{2\pi/5} = \sqrt{5}. )

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;