Photo AI
Question 3
A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. When P is hangi... show full transcript
Step 1
Answer
To derive the expression for tension T, consider the forces acting on the particle P when it is at angle θ. Using radial motion, we can write the equation:
.
Here, v is the tangential speed. By using the conservation of energy, we know:
,
substituting h and employing trigonometric identities gives:
Step 2
Answer
Let T_max and T_min be the maximum and minimum tensions, respectively. Given the ratio, we can represent:
Substituting to find values for T_max and T_min leads to the equations:
Solving these equations results in:
Step 3
Answer
From before, using T_max we have:
Now, half of this would be:
Using the expression for tension T derived earlier, we set:
This gives the final relationship and constants to determine cos θ.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Complex Numbers & Argand Diagrams
Further Maths - CIE
2.1 Properties of Matrices
Further Maths - CIE
3.1 Roots of Polynomials
Further Maths - CIE
9.1 Proof by Induction
Further Maths - CIE
4.1 Hyperbolic Functions
Further Maths - CIE
5.1 Volumes of Revolution
Further Maths - CIE
6.1 Vector Lines
Further Maths - CIE
8.1 First Order Differential Equations
Further Maths - CIE
7.1 Polar Coordinates
Further Maths - CIE
1.2 Exponential Form & de Moivre's Theorem
Further Maths - CIE
8.2 Second Order Differential Equations
Further Maths - CIE
6.2 Vector Planes
Further Maths - CIE
5.2 Methods in Calculus
Further Maths - CIE
3.2 Series
Further Maths - CIE
2.2 Transformations using Matrices
Further Maths - CIE
8.3 Simple Harmonic Motion
Further Maths - CIE
3.3 Maclaurin Series
Further Maths - CIE
12.1 Linear Programming (LP) problems
Further Maths - CIE
13.1 Momentum & Impulse
Further Maths - CIE
14.1 Work, Energy & Power
Further Maths - CIE
15.1 Elastic Strings & Springs
Further Maths - CIE
15.2 Elastic Collisions in 1D
Further Maths - CIE
15.3 Elastic Collisions in 2D
Further Maths - CIE
16.1 Discrete Probability Distributions
Further Maths - CIE
17.1 Geometric & Negative Binomial Distributions
Further Maths - CIE
18.1 Central Limit Theorem
Further Maths - CIE
19.1 Poisson & Binomial Distributions
Further Maths - CIE
20.1 Probability Generating Functions
Further Maths - CIE
21.1 Poisson & Geometric Hypothesis Testing
Further Maths - CIE
21.2 Chi Squared Tests
Further Maths - CIE