Photo AI

The continuous random variable X has probability density function f given by $$ f(x) = \begin{cases} \frac{x}{2} & 2 \leq x \leq 4 \\ 0 & \text{otherwise} \end{cases}$$ The random variable Y is defined by Y = X^3 - CIE - A-Level Further Maths - Question 8 - 2013 - Paper 1

Question icon

Question 8

The-continuous-random-variable-X-has-probability-density-function-f-given-by--$$-f(x)-=-\begin{cases}-\frac{x}{2}-&-2-\leq-x-\leq-4-\\-0-&-\text{otherwise}-\end{cases}$$--The-random-variable-Y-is-defined-by-Y-=-X^3-CIE-A-Level Further Maths-Question 8-2013-Paper 1.png

The continuous random variable X has probability density function f given by $$ f(x) = \begin{cases} \frac{x}{2} & 2 \leq x \leq 4 \\ 0 & \text{otherwise} \end{case... show full transcript

Worked Solution & Example Answer:The continuous random variable X has probability density function f given by $$ f(x) = \begin{cases} \frac{x}{2} & 2 \leq x \leq 4 \\ 0 & \text{otherwise} \end{cases}$$ The random variable Y is defined by Y = X^3 - CIE - A-Level Further Maths - Question 8 - 2013 - Paper 1

Step 1

Show that Y has probability density function g given by

96%

114 rated

Answer

To find the probability density function g(y), we first need to identify the cumulative distribution function F(y) of Y. Since Y = X^3, we want to express the variables in terms of Y:

  1. Change of Variables: For a given value of y, if Y = X^3, then we have X = Y^{1/3}. This change of variable leads to:

    • The bounds for Y are 8 to 64 since if X is between 2 and 4, then Y must be between (2^3 = 8) and (4^3 = 64).
  2. Find the cumulative distribution function F(y): Thus, F(y)=P(Y≤y)=P(X3≤y)=P(X≤y1/3)F(y) = P(Y \leq y) = P(X^3 \leq y) = P(X \leq y^{1/3}) We can calculate this using the given density function of X:

    F(y)=∫2y1/3x2dx=[x24]2y1/3=(y1/3)24−224=y2/34−1F(y) = \int_{2}^{y^{1/3}} \frac{x}{2} dx = \left[ \frac{x^2}{4} \right]_{2}^{y^{1/3}} = \frac{(y^{1/3})^2}{4} - \frac{2^2}{4} = \frac{y^{2/3}}{4} - 1

    from 2 to y^{1/3}.

  3. Finding g(y): The probability density function is given by differentiating F(y): g(y)=ddyF(y)=ddy(y2/34−1)=14⋅23y−1/3=16y−1/3g(y) = \frac{d}{dy} F(y) = \frac{d}{dy} \left( \frac{y^{2/3}}{4} - 1 \right) = \frac{1}{4} \cdot \frac{2}{3} y^{-1/3} = \frac{1}{6} y^{-1/3} This shows that g(y) is valid for 8 \leq y \leq 64 and is 0 otherwise. Thus, we get:

g(y) = \begin{cases}\frac{1}{18}y^{\frac{1}{3}} & 8 \leq y \leq 64 \ 0 & \text{otherwise} \end{cases}$$

Step 2

Find E(Y)

99%

104 rated

Answer

To find E(Y), we can utilize the formula for expected value based on the density function g(y):

E(Y)=∫abyg(y) dyE(Y) = \int_{a}^{b} y g(y) \, dy for the limits (a = 8) and (b = 64).

  1. Substitute g(y) into the expected value equation: E(Y)=∫864y⋅118y13 dyE(Y) = \int_{8}^{64} y \cdot \frac{1}{18} y^{\frac{1}{3}} \, dy which simplifies to: E(Y)=118∫864y43 dyE(Y) = \frac{1}{18} \int_{8}^{64} y^{\frac{4}{3}} \, dy

  2. Evaluate the integral: E(Y)=118[y7373]864=3126[6473−873]E(Y) = \frac{1}{18} \left[ \frac{y^{\frac{7}{3}}}{\frac{7}{3}} \right]_{8}^{64} = \frac{3}{126} \left[ 64^{\frac{7}{3}} - 8^{\frac{7}{3}} \right] where, (64^{\frac{7}{3}} = 64^2 = 4096) and (8^{\frac{7}{3}} = 8^{2+\frac{1}{3}} = 64 \cdot 2 = 128).

  3. Substitute these values back: E(Y)=3126(4096−128)=3126⋅3968=11904126=9923=330.67E(Y) = \frac{3}{126} (4096 - 128) = \frac{3}{126} \cdot 3968 = \frac{11904}{126} = \frac{992}{3} = 330.67 Therefore, the expected value is ( E(Y) \approx 330.67 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;