Photo AI

Find the cubic equation with roots $\alpha, \beta$ and $\gamma$ such that $\alpha + \beta + \gamma = 3,$ $\alpha^2 + \beta^2 + \gamma^2 = 1,$ $\alpha^2 + \beta^3 + \gamma^3 = -30,$ giving your answer in the form $x^3 + px^2 + qx + r = 0,$ where $p, q$ and $r$ are integers to be found. - CIE - A-Level Further Maths - Question 2 - 2016 - Paper 1

Question icon

Question 2

Find-the-cubic-equation-with-roots-$\alpha,-\beta$-and-$\gamma$-such-that---$\alpha-+-\beta-+-\gamma-=-3,$---$\alpha^2-+-\beta^2-+-\gamma^2-=-1,$---$\alpha^2-+-\beta^3-+-\gamma^3-=--30,$----giving-your-answer-in-the-form-$x^3-+-px^2-+-qx-+-r-=-0,$-where-$p,-q$-and-$r$-are-integers-to-be-found.-CIE-A-Level Further Maths-Question 2-2016-Paper 1.png

Find the cubic equation with roots $\alpha, \beta$ and $\gamma$ such that $\alpha + \beta + \gamma = 3,$ $\alpha^2 + \beta^2 + \gamma^2 = 1,$ $\alpha^2 + \beta... show full transcript

Worked Solution & Example Answer:Find the cubic equation with roots $\alpha, \beta$ and $\gamma$ such that $\alpha + \beta + \gamma = 3,$ $\alpha^2 + \beta^2 + \gamma^2 = 1,$ $\alpha^2 + \beta^3 + \gamma^3 = -30,$ giving your answer in the form $x^3 + px^2 + qx + r = 0,$ where $p, q$ and $r$ are integers to be found. - CIE - A-Level Further Maths - Question 2 - 2016 - Paper 1

Step 1

Find Expressions for $p$, $q$, and $r$

96%

114 rated

Answer

Using Vieta's formulas, we know: p=−(α+β+γ)p = - (\alpha + \beta + \gamma) From the equation, we have: p=−3.p = -3.

Step 2

Calculate $\alpha^2 + \beta^2 + \gamma^2$

99%

104 rated

Answer

We use the identity: α2+β2+γ2=(α+β+γ)2−2(αβ+βγ+γα).\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha). Substituting known values: α2+β2+γ2=32−2s=1,\alpha^2 + \beta^2 + \gamma^2 = 3^2 - 2s = 1, where s=αβ+βγ+γαs = \alpha\beta + \beta\gamma + \gamma\alpha. Thus, 9−2s=1⇒2s=8⇒s=4.9 - 2s = 1 \Rightarrow 2s = 8 \Rightarrow s = 4.

Step 3

Calculate $\alpha^3 + \beta^3 + \gamma^3$

96%

101 rated

Answer

We use the identity: α3+β3+γ3=(α+β+γ)(α2+β2+γ2−αβ−βγ−γα)+3αβγ.\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma. Substituting values gives us: −30=3(1−4)+3r⇒−30=3(−3)+3r⇒−30=−9+3r⇒3r=−21⇒r=−7.-30 = 3(1 - 4) + 3r \Rightarrow -30 = 3(-3) + 3r \Rightarrow -30 = -9 + 3r \Rightarrow 3r = -21 \Rightarrow r = -7.

Step 4

Formulate the Cubic Equation

98%

120 rated

Answer

Finally, substituting values of pp, qq, and rr into the cubic equation: x3−3x2+4x−7=0.x^3 - 3x^2 + 4x - 7 = 0. Thus, the cubic equation is: x3−3x2+4x−7=0.x^3 - 3x^2 + 4x - 7 = 0.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;