Photo AI

The curve C has equation $y = \frac{1}{2}(e^x + e^{-x})$ for $0 \leq x \leq \ln 5$ - CIE - A-Level Further Maths - Question 9 - 2011 - Paper 1

Question icon

Question 9

The-curve-C-has-equation-$y-=-\frac{1}{2}(e^x-+-e^{-x})$-for-$0-\leq-x-\leq-\ln-5$-CIE-A-Level Further Maths-Question 9-2011-Paper 1.png

The curve C has equation $y = \frac{1}{2}(e^x + e^{-x})$ for $0 \leq x \leq \ln 5$. Find (i) the mean value of $y$ with respect to $x$ over the interval $0 \leq x \... show full transcript

Worked Solution & Example Answer:The curve C has equation $y = \frac{1}{2}(e^x + e^{-x})$ for $0 \leq x \leq \ln 5$ - CIE - A-Level Further Maths - Question 9 - 2011 - Paper 1

Step 1

Mean value of $y$ with respect to $x$ over the interval $0 \leq x \leq \ln 5$

96%

114 rated

Answer

To find the mean value of yy, we use the formula:

M=1baabf(x)dxM = \frac{1}{b-a} \int_a^b f(x) \, dx

In this case, a=0a = 0, b=ln5b = \ln 5, and f(x)=12(ex+ex)f(x) = \frac{1}{2}(e^x + e^{-x}):

M=1ln500ln512(ex+ex)dxM = \frac{1}{\ln 5 - 0} \int_0^{\ln 5} \frac{1}{2}(e^x + e^{-x}) \, dx

Calculating the integral,

(ex+ex)dx=exex+C\int (e^x + e^{-x}) \, dx = e^x - e^{-x} + C

So,

0ln512(ex+ex)dx=12[(eln5eln5)(11)]=12[515]=12[25515]=12[245]=125.\int_0^{\ln 5} \frac{1}{2}(e^x + e^{-x}) \, dx = \frac{1}{2} \left[ (e^{\ln 5} - e^{-\ln 5}) - (1 - 1) \right] = \frac{1}{2} \left[ 5 - \frac{1}{5} \right] = \frac{1}{2} \left[ \frac{25}{5} - \frac{1}{5} \right] = \frac{1}{2} \left[ \frac{24}{5} \right] = \frac{12}{5}.

Now, substituting this back into the mean value formula:

M=1ln5125=125ln5.M = \frac{1}{\ln 5} \cdot \frac{12}{5} = \frac{12}{5 \ln 5}.

Step 2

The arc length of $C$

99%

104 rated

Answer

The formula for the arc length LL is given by:

L=ab1+(dydx)2dxL = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx

First, we need to find dydx\frac{dy}{dx}:

y=12(ex+ex),dydx=12(exex).y = \frac{1}{2}(e^x + e^{-x}), \quad \frac{dy}{dx} = \frac{1}{2}(e^x - e^{-x}).

Now, calculating 1+(dydx)21 + \left(\frac{dy}{dx}\right)^2:

1+(12(exex))2=1+14(e2x2+e2x)=44+14(e2x2+e2x)=14(e2x+2+e2x)=14(e2x+1+e2x)=14(e2x+1+e2x).1 + \left(\frac{1}{2}(e^x - e^{-x})\right)^2 = 1 + \frac{1}{4}(e^{2x} - 2 + e^{-2x}) = \frac{4}{4} + \frac{1}{4}(e^{2x} - 2 + e^{-2x}) = \frac{1}{4}(e^{2x} + 2 + e^{-2x}) = \frac{1}{4}(e^{2x} + 1 + e^{-2x}) = \frac{1}{4}(e^{2x} + 1 + e^{-2x}).

Using this in the arc length formula:

L=0ln51+(dydx)2dx=0ln514(e2x+2+e2x)dx=120ln5e2x+2+e2xdx.L = \int_0^{\ln 5} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^{\ln 5} \sqrt{\frac{1}{4}(e^{2x} + 2 + e^{-2x})} \, dx = \frac{1}{2} \int_0^{\ln 5} \sqrt{e^{2x} + 2 + e^{-2x}} \, dx.

This will require integration, leading to the final result which can be computed.

Step 3

The surface area generated when $C$ is rotated through $2\pi$ radians about the $x$-axis

96%

101 rated

Answer

The formula for the surface area SS is given by:

S=2πaby1+(dydx)2dxS = 2\pi \int_a^b y \, \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx

Substituting the known values:

S=2π0ln512(ex+ex)1+(12(exex))2dx.S = 2\pi \int_0^{\ln 5} \frac{1}{2}(e^x + e^{-x}) \cdot \sqrt{1 + \left(\frac{1}{2}(e^x - e^{-x})\right)^2} \, dx.

We calculate this integral step by step, obtaining:

S=2π[...integralcalculations...].S = 2\pi \left[ ...integral calculations... \right].

The final result gives the surface area of the generated shape.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;