Photo AI
Question 9
9 (i) Using the substitution $u = \tan x$, or otherwise, find \[ \int \sec^2 x \tan^2 x \, dx. \] It is given that, for $n \geq 0$, \[ I_n = \int_0^{\pi/4} \sec^2... show full transcript
Step 1
Step 2
Answer
To show this statement, start with: [ I_n = \int_0^{\pi/4} \sec^2 x \tan^2 x , dx. ]
Using integration by parts:
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Complex Numbers & Argand Diagrams
Further Maths - CIE
2.1 Properties of Matrices
Further Maths - CIE
3.1 Roots of Polynomials
Further Maths - CIE
9.1 Proof by Induction
Further Maths - CIE
4.1 Hyperbolic Functions
Further Maths - CIE
5.1 Volumes of Revolution
Further Maths - CIE
6.1 Vector Lines
Further Maths - CIE
8.1 First Order Differential Equations
Further Maths - CIE
7.1 Polar Coordinates
Further Maths - CIE
1.2 Exponential Form & de Moivre's Theorem
Further Maths - CIE
8.2 Second Order Differential Equations
Further Maths - CIE
6.2 Vector Planes
Further Maths - CIE
5.2 Methods in Calculus
Further Maths - CIE
3.2 Series
Further Maths - CIE
2.2 Transformations using Matrices
Further Maths - CIE
8.3 Simple Harmonic Motion
Further Maths - CIE
3.3 Maclaurin Series
Further Maths - CIE
12.1 Linear Programming (LP) problems
Further Maths - CIE
13.1 Momentum & Impulse
Further Maths - CIE
14.1 Work, Energy & Power
Further Maths - CIE
15.1 Elastic Strings & Springs
Further Maths - CIE
15.2 Elastic Collisions in 1D
Further Maths - CIE
15.3 Elastic Collisions in 2D
Further Maths - CIE
16.1 Discrete Probability Distributions
Further Maths - CIE
17.1 Geometric & Negative Binomial Distributions
Further Maths - CIE
18.1 Central Limit Theorem
Further Maths - CIE
19.1 Poisson & Binomial Distributions
Further Maths - CIE
20.1 Probability Generating Functions
Further Maths - CIE
21.1 Poisson & Geometric Hypothesis Testing
Further Maths - CIE
21.2 Chi Squared Tests
Further Maths - CIE