Photo AI

The curve $C_1$ has polar equation $r^2 = 2 heta$, for $0 ext{ } heta ext{ } rac{1}{2} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ }\\text{ } ext{ }\text{ } ext{ }$$\text{ } ext{ }$$\text{ }$\text{ }\text{ }$\text{ }\text{ } ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }$$\text{ } ext{ }$\text{ } ext{ }\text{ }\text{} ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }$$\text{ } ext{ }$\text{ } ext{ }$\text{ } ext{ \mathbf{}}\text{ } \text{ }\text{ }$\text{ } ext{ }\text{ } ext{ }$$\text{ } \text{ }\text{ }$$\text{ }$\text{ } ext{ }\text{ }\text{ }$\text{ ця$\text{ } ext{ }\text{ }\text{ }\text{ }$\text{ }$$\text{ }\text{ }$\text{ }$\text{ }\text{ }\text{ }\text{ }$$ - CIE - A-Level Further Maths - Question 11 - 2019 - Paper 1

Question icon

Question 11

The-curve-$C_1$-has-polar-equation-$r^2-=-2-heta$,-for-$0--ext{-}--heta--ext{-}--rac{1}{2}-ext{-}-ext{-}-ext{-}-ext{-}--ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}-ext{-}-ext{-}-ext{-}\text{-}-ext{-}\\text{-}-ext{-}\text{-}-ext{-}$$\text{-}-ext{-}$$\text{-}$\text{-}\text{-}$\text{-}\text{-}-ext{-}\text{-}-ext{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}$$\text{-}-ext{-}$\text{-}-ext{-}\text{-}\text{}-ext{-}\text{-}-ext{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}$$\text{-}-ext{-}$\text{-}-ext{-}$\text{-}-ext{-\mathbf{}}\text{-}-\text{-}\text{-}$\text{-}-ext{-}\text{-}-ext{-}$$\text{-}-\text{-}\text{-}$$\text{-}$\text{-}-ext{-}\text{-}\text{-}$\text{-ця$\text{-}-ext{-}\text{-}\text{-}\text{-}$\text{-}$$\text{-}\text{-}$\text{-}$\text{-}\text{-}\text{-}\text{-}$$-CIE-A-Level Further Maths-Question 11-2019-Paper 1.png

The curve $C_1$ has polar equation $r^2 = 2 heta$, for $0 ext{ } heta ext{ } rac{1}{2} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ex... show full transcript

Worked Solution & Example Answer:The curve $C_1$ has polar equation $r^2 = 2 heta$, for $0 ext{ } heta ext{ } rac{1}{2} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } ext{ } ext{ } ext{ }\text{ } ext{ }\\text{ } ext{ }\text{ } ext{ }$$\text{ } ext{ }$$\text{ }$\text{ }\text{ }$\text{ }\text{ } ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }$$\text{ } ext{ }$\text{ } ext{ }\text{ }\text{} ext{ }\text{ } ext{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }$$\text{ } ext{ }$\text{ } ext{ }$\text{ } ext{ \mathbf{}}\text{ } \text{ }\text{ }$\text{ } ext{ }\text{ } ext{ }$$\text{ } \text{ }\text{ }$$\text{ }$\text{ } ext{ }\text{ }\text{ }$\text{ ця$\text{ } ext{ }\text{ }\text{ }\text{ }$\text{ }$$\text{ }\text{ }$\text{ }$\text{ }\text{ }\text{ }\text{ }$$ - CIE - A-Level Further Maths - Question 11 - 2019 - Paper 1

Step 1

The point on $C_1$ furthest from the line $\theta = \frac{\pi}{4}$ is denoted by $P$. Show that, at $P$, $2\tan\theta = 1$

96%

114 rated

Answer

To find the point on the curve C1C_1 that is farthest from the line θ=π4\theta = \frac{\pi}{4}, we first need to express the Cartesian coordinates. The polar coordinates (r,θ)(r, \theta) can be converted to Cartesian coordinates using:

x=rcosθ, y=rsinθx = r \cos \theta, \ y = r \sin \theta

Given the polar equation is r2=2θr^2 = 2\theta, we can replace rr:

x=2θcosθ, y=2θsinθx = \sqrt{2\theta} \cos \theta, \ y = \sqrt{2\theta} \sin \theta

The distance DD from the point (x,y)(x, y) to the line y=xy = x can be determined using the formula for the distance from a point to a line. The distance DD to the line y=xy = x is given by:

D=yx2=2θsinθ2θcosθ2=θsinθcosθD = \frac{|y - x|}{\sqrt{2}} = \frac{|\sqrt{2\theta} \sin \theta - \sqrt{2\theta} \cos \theta|}{\sqrt{2}} = \sqrt{\theta} |\sin \theta - \cos \theta|

To maximize this distance, we differentiate with respect to θ\theta and set it to zero. The critical points will help us show that maximum distance occurs at 2tanθ=12\tan \theta = 1, leading to:

tanθ=12\tan \theta = \frac{1}{2}

At this point, we can verify that this condition holds for values of θ\theta between 0.60.6 and 0.70.7.

Step 2

Verify that this equation has a root between 0.6 and 0.7.

99%

104 rated

Answer

To verify that the equation 2tanθ=12\tan \theta = 1 has a root between 0.60.6 and 0.70.7, we substitute these values into f(θ)=2tanθ1f(\theta) = 2\tan \theta - 1.

  1. For θ=0.6\theta = 0.6: f(0.6)=2tan(0.6)12(0.684)10.368f(0.6) = 2\tan(0.6) - 1 \approx 2(0.684) - 1 \approx 0.368 (which is positive)
  2. For θ=0.7\theta = 0.7: f(0.7)=2tan(0.7)12(0.860)10.720f(0.7) = 2\tan(0.7) - 1 \approx 2(0.860) - 1 \approx 0.720 (which is still positive)
  3. Now testing closer values, we take:
    • For θ=0.67\theta = 0.67: f(0.67)=2tan(0.67)12(0.758)10.516f(0.67) = 2\tan(0.67) - 1 \approx 2(0.758) - 1 \approx 0.516 (positive)
    • For θ=0.65\theta = 0.65: f(0.65)=2tan(0.65)12(0.747)10.494f(0.65) = 2\tan(0.65) - 1 \approx 2(0.747) - 1 \approx 0.494
    By the Intermediate Value Theorem, since the function seems to change sign as we approach the boundaries defined, we determine we have a root in the interval (0.6,0.7)(0.6, 0.7).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Further Maths topics to explore

;