Photo AI
Question 11
The curve $C_1$ has polar equation $r^2 = 2 heta$, for $0 ext{ } heta ext{ } rac{1}{2} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ }\text{ } ext{ } ext{ } ext{ } ex... show full transcript
Step 1
Answer
To find the point on the curve that is farthest from the line , we first need to express the Cartesian coordinates. The polar coordinates can be converted to Cartesian coordinates using:
Given the polar equation is , we can replace :
The distance from the point to the line can be determined using the formula for the distance from a point to a line. The distance to the line is given by:
To maximize this distance, we differentiate with respect to and set it to zero. The critical points will help us show that maximum distance occurs at , leading to:
At this point, we can verify that this condition holds for values of between and .
Step 2
Answer
To verify that the equation has a root between and , we substitute these values into .
Report Improved Results
Recommend to friends
Students Supported
Questions answered
1.1 Complex Numbers & Argand Diagrams
Further Maths - CIE
2.1 Properties of Matrices
Further Maths - CIE
3.1 Roots of Polynomials
Further Maths - CIE
9.1 Proof by Induction
Further Maths - CIE
4.1 Hyperbolic Functions
Further Maths - CIE
5.1 Volumes of Revolution
Further Maths - CIE
6.1 Vector Lines
Further Maths - CIE
8.1 First Order Differential Equations
Further Maths - CIE
7.1 Polar Coordinates
Further Maths - CIE
1.2 Exponential Form & de Moivre's Theorem
Further Maths - CIE
8.2 Second Order Differential Equations
Further Maths - CIE
6.2 Vector Planes
Further Maths - CIE
5.2 Methods in Calculus
Further Maths - CIE
3.2 Series
Further Maths - CIE
2.2 Transformations using Matrices
Further Maths - CIE
8.3 Simple Harmonic Motion
Further Maths - CIE
3.3 Maclaurin Series
Further Maths - CIE
12.1 Linear Programming (LP) problems
Further Maths - CIE
13.1 Momentum & Impulse
Further Maths - CIE
14.1 Work, Energy & Power
Further Maths - CIE
15.1 Elastic Strings & Springs
Further Maths - CIE
15.2 Elastic Collisions in 1D
Further Maths - CIE
15.3 Elastic Collisions in 2D
Further Maths - CIE
16.1 Discrete Probability Distributions
Further Maths - CIE
17.1 Geometric & Negative Binomial Distributions
Further Maths - CIE
18.1 Central Limit Theorem
Further Maths - CIE
19.1 Poisson & Binomial Distributions
Further Maths - CIE
20.1 Probability Generating Functions
Further Maths - CIE
21.1 Poisson & Geometric Hypothesis Testing
Further Maths - CIE
21.2 Chi Squared Tests
Further Maths - CIE