Photo AI

A particle P of mass 2 kg is moving under the action of a constant force F newtons - Edexcel - A-Level Maths Mechanics - Question 3 - 2007 - Paper 1

Question icon

Question 3

A-particle-P-of-mass-2-kg-is-moving-under-the-action-of-a-constant-force-F-newtons-Edexcel-A-Level Maths Mechanics-Question 3-2007-Paper 1.png

A particle P of mass 2 kg is moving under the action of a constant force F newtons. When t = 0, P has velocity (3i + 2j) m s⁻¹ and at time t = 4 s, P has velocity (1... show full transcript

Worked Solution & Example Answer:A particle P of mass 2 kg is moving under the action of a constant force F newtons - Edexcel - A-Level Maths Mechanics - Question 3 - 2007 - Paper 1

Step 1

the acceleration of P in terms of i and j

96%

114 rated

Answer

To find the acceleration of P, we first determine the change in velocity over the duration of time. The initial velocity at t = 0 s is (\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}) m s⁻¹, and the final velocity at t = 4 s is (\mathbf{v} = 15\mathbf{i} - 4\mathbf{j}) m s⁻¹.

The change in velocity (\Delta \mathbf{v}) is given by:

Δv=vu=(15i4j)(3i+2j)=(153)i+(42)j=12i6j.\Delta \mathbf{v} = \mathbf{v} - \mathbf{u} = (15\mathbf{i} - 4\mathbf{j}) - (3\mathbf{i} + 2\mathbf{j}) = (15 - 3)\mathbf{i} + (-4 - 2)\mathbf{j} = 12\mathbf{i} - 6\mathbf{j}.

The acceleration (\mathbf{a}) can be calculated using the formula:

a=ΔvΔt=12i6j4=3i1.5j.\mathbf{a} = \frac{\Delta \mathbf{v}}{\Delta t} = \frac{12\mathbf{i} - 6\mathbf{j}}{4} = 3\mathbf{i} - 1.5\mathbf{j}.

Step 2

the magnitude of F

99%

104 rated

Answer

Using Newton's second law, we know that the force (F) is given by:

F=ma,F = m \mathbf{a},

where (m = 2 \text{ kg}) and (\mathbf{a} = 3\mathbf{i} - 1.5\mathbf{j}). Thus:

F=2(3i1.5j)=6i3j.F = 2(3\mathbf{i} - 1.5\mathbf{j}) = 6\mathbf{i} - 3\mathbf{j}.

To find the magnitude of (F), we calculate:

F=(6)2+(3)2=36+9=456.71extN.|F| = \sqrt{(6)^2 + (-3)^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.71 ext{ N}.

Step 3

the velocity of P at time t = 6 s

96%

101 rated

Answer

To find the velocity at t = 6 s, we can use the initial velocity and the acceleration:

v6=u+aΔt,\mathbf{v}_{6} = \mathbf{u} + \mathbf{a} \Delta t,

where (\Delta t = 6 \text{ s}) and using (\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}) and (\mathbf{a} = 3\mathbf{i} - 1.5\mathbf{j}):

v6=(3i+2j)+(3i1.5j)6\mathbf{v}_{6} = (3\mathbf{i} + 2\mathbf{j}) + (3\mathbf{i} - 1.5\mathbf{j}) \cdot 6

Calculating this gives:

=(3+18)i+(29)j=21i7j.= (3 + 18)\mathbf{i} + (2 - 9)\mathbf{j} = 21\mathbf{i} - 7\mathbf{j}.

Thus, the velocity of P at t = 6 s is:

v6=21i7j m s⁻¹.\mathbf{v}_{6} = 21\mathbf{i} - 7\mathbf{j} \text{ m s⁻¹}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;