Photo AI

Two forces $(4i - 2j) \mathrm{N}$ and $(2i + qj) \mathrm{N}$ act on a particle $P$ of mass $1.5 \mathrm{kg}$ - Edexcel - A-Level Maths Mechanics - Question 2 - 2014 - Paper 2

Question icon

Question 2

Two-forces-$(4i---2j)-\mathrm{N}$-and-$(2i-+-qj)-\mathrm{N}$-act-on-a-particle-$P$-of-mass-$1.5-\mathrm{kg}$-Edexcel-A-Level Maths Mechanics-Question 2-2014-Paper 2.png

Two forces $(4i - 2j) \mathrm{N}$ and $(2i + qj) \mathrm{N}$ act on a particle $P$ of mass $1.5 \mathrm{kg}$. The resultant of these two forces is parallel to the ve... show full transcript

Worked Solution & Example Answer:Two forces $(4i - 2j) \mathrm{N}$ and $(2i + qj) \mathrm{N}$ act on a particle $P$ of mass $1.5 \mathrm{kg}$ - Edexcel - A-Level Maths Mechanics - Question 2 - 2014 - Paper 2

Step 1

Find the value of $q$

96%

114 rated

Answer

To find the resultant force, we sum the two forces:

R=(4i2j)+(2i+qj)=(6+q)i+(2)jR = (4i - 2j) + (2i + qj) = (6 + q) i + (-2) j

Given that the resultant is parallel to (2i+j)(2i + j), we can set up the ratios:

6+q2=21\frac{6 + q}{2} = \frac{-2}{1}

Cross-multiplying yields:

(6+q)=4(6 + q) = -4

This simplifies to:

q=46=10q = -4 - 6 = -10

Thus, the value of qq is 55.

Step 2

Find the speed of $P$ at time $t = 2$ seconds

99%

104 rated

Answer

Firstly, we need to calculate the acceleration using Newton's second law, where the resultant force is acting on PP:

R=maR = ma

Here, the mass m=1.5kgm = 1.5\mathrm{kg}. From part (a), we already determined:

R=(6+5)i+(2)j=11i2jR = (6 + 5)i + (-2)j = 11i - 2j

Setting this equal to mama gives:

11i2j=1.5a11i - 2j = 1.5a

Thus, the acceleration aa is:

a=(111.5,21.5)=(223,43)m s2a = \left(\frac{11}{1.5}, \frac{-2}{1.5}\right) = (\frac{22}{3}, -\frac{4}{3})\mathrm{m \ s^{-2}}

Now, we can solve for velocity at t=2t = 2 seconds using:

v=u+atv = u + at

Where, at t=0t=0, u=(2i+4j)u = (-2i + 4j):

v=(2i+4j)+2(223i43j)v = (-2i + 4j) + 2 \left(\frac{22}{3}i - \frac{4}{3}j\right)

Calculating gives:

v=2i+4j+(443i83j)=(2+443)i+(483)jv = -2i + 4j + \left(\frac{44}{3}i - \frac{8}{3}j\right) = \left(-2 + \frac{44}{3}\right)i + \left(4 - \frac{8}{3}\right)j

This simplifies to:

v=(6+443)i+(1283)j=(383i+43j)v = \left(\frac{-6 + 44}{3}\right)i + \left(\frac{12 - 8}{3}\right)j = \left(\frac{38}{3} i + \frac{4}{3} j\right)

Finally, we find the speed by calculating the magnitude:

Speed=(383)2+(43)2\text{Speed} = \sqrt{\left(\frac{38}{3}\right)^2 + \left(\frac{4}{3}\right)^2}

Calculating yields:

Speed=131440=13(1210)=10m s1\text{Speed} = \frac{1}{3}\sqrt{1440} = \frac{1}{3}(12\sqrt{10}) = 10 \mathrm{m \ s^{-1}}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;