Photo AI

6. At time t seconds, where t > 0, a particle P moves in the x-y plane in such a way that its velocity v ms⁻¹ is given by $$ extbf{v} = t^2 extbf{i} - 4 extbf{j}$$ - Edexcel - A-Level Maths Mechanics - Question 6 - 2018 - Paper 1

Question icon

Question 6

6.-At-time-t-seconds,-where-t->-0,-a-particle-P-moves-in-the-x-y-plane-in-such-a-way-that-its-velocity-v-ms⁻¹-is-given-by--$$-extbf{v}-=-t^2--extbf{i}---4--extbf{j}$$-Edexcel-A-Level Maths Mechanics-Question 6-2018-Paper 1.png

6. At time t seconds, where t > 0, a particle P moves in the x-y plane in such a way that its velocity v ms⁻¹ is given by $$ extbf{v} = t^2 extbf{i} - 4 extbf{j}$... show full transcript

Worked Solution & Example Answer:6. At time t seconds, where t > 0, a particle P moves in the x-y plane in such a way that its velocity v ms⁻¹ is given by $$ extbf{v} = t^2 extbf{i} - 4 extbf{j}$$ - Edexcel - A-Level Maths Mechanics - Question 6 - 2018 - Paper 1

Step 1

Integrate v w.r.t. time

96%

114 rated

Answer

To find the position vector extbf{r} of the particle, we integrate the velocity vector with respect to time:

extbfr=extbfvdt=(t2i4j)dt extbf{r} = \int extbf{v} \, dt = \int (t^2 \textbf{i} - 4 \textbf{j}) \, dt.

This gives us:

r=t33i4tj+C,\textbf{r} = \frac{t^3}{3} \textbf{i} - 4t \textbf{j} + \textbf{C},

where extbf{C} is the constant of integration.

Step 2

Substitute t = 1 and t = 4 into their r

99%

104 rated

Answer

At t = 1:

r(1)=133i4(1)j+C=13i4j+C=A\textbf{r}(1) = \frac{1^3}{3} \textbf{i} - 4(1) \textbf{j} + \textbf{C} = \frac{1}{3} \textbf{i} - 4 \textbf{j} + \textbf{C} = \textbf{A}.

At t = 4:

r(4)=433i4(4)j+C=643i16j+C=B\textbf{r}(4) = \frac{4^3}{3} \textbf{i} - 4(4) \textbf{j} + \textbf{C} = \frac{64}{3} \textbf{i} - 16 \textbf{j} + \textbf{C} = \textbf{B}.

Step 3

Find the exact distance AB

96%

101 rated

Answer

The distance AB can be calculated using:

AB=(xBxA)2+(yByA)2,AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2},

Substituting the coordinates of points A and B:

AB=(64313)2+(16+4)2=(633)2+(12)2=212+122=441+144=585=904226.AB = \sqrt{\left(\frac{64}{3} - \frac{1}{3}\right)^2 + (-16 + 4)^2} = \sqrt{\left(\frac{63}{3}\right)^2 + (-12)^2} = \sqrt{21^2 + 12^2} = \sqrt{441 + 144} = \sqrt{585} = \sqrt{\frac{904}{226}}.

Thus, the exact distance AB is:

AB=904226AB = \frac{\sqrt{904}}{\sqrt{226}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;