Photo AI

At time $t$ seconds, a particle $P$ has velocity $ extbf{v} ext{ m s}^{-1}$, where $$ extbf{v} = 3t^{2} extbf{i} - 2t extbf{j} \, (t > 0)$$ (a) Find the acceleration of $P$ at time $t$ seconds, where $t > 0$ - Edexcel - A-Level Maths Mechanics - Question 5 - 2021 - Paper 1

Question icon

Question 5

At-time-$t$-seconds,-a-particle-$P$-has-velocity-$-extbf{v}--ext{-m-s}^{-1}$,-where--$$-extbf{v}-=-3t^{2}--extbf{i}---2t--extbf{j}-\,-(t->-0)$$--(a)-Find-the-acceleration-of-$P$-at-time-$t$-seconds,-where-$t->-0$-Edexcel-A-Level Maths Mechanics-Question 5-2021-Paper 1.png

At time $t$ seconds, a particle $P$ has velocity $ extbf{v} ext{ m s}^{-1}$, where $$ extbf{v} = 3t^{2} extbf{i} - 2t extbf{j} \, (t > 0)$$ (a) Find the acceler... show full transcript

Worked Solution & Example Answer:At time $t$ seconds, a particle $P$ has velocity $ extbf{v} ext{ m s}^{-1}$, where $$ extbf{v} = 3t^{2} extbf{i} - 2t extbf{j} \, (t > 0)$$ (a) Find the acceleration of $P$ at time $t$ seconds, where $t > 0$ - Edexcel - A-Level Maths Mechanics - Question 5 - 2021 - Paper 1

Step 1

Find the acceleration of P at time t seconds, where t > 0

96%

114 rated

Answer

To find the acceleration, we differentiate the velocity vector:

extbf{a} = rac{d extbf{v}}{dt}

Differentiating:

extbfv=3t2extbfi2textbfj extbf{v} = 3t^{2} extbf{i} - 2t extbf{j}

we get:

extbfa=6textbfi2extbfj extbf{a} = 6t extbf{i} - 2 extbf{j}

Step 2

Find the value of t at the instant when P is moving in the direction of i - j

99%

104 rated

Answer

For PP to move in the direction of extbfiextbfj extbf{i} - extbf{j}, we require:

extbfvextisparalleltoextbfiextbfj extbf{v} ext{ is parallel to } extbf{i} - extbf{j}

This means:

rac{3t^{2}}{-2t} = rac{1}{-1}

Solving this:

3t2=2t3t^{2} = 2t

So:

\implies t = 0 ext{ or } t = \frac{2}{3}$$ Thus, at the instant required, $t = \frac{2}{3}$.

Step 3

Find an expression for r in terms of t

96%

101 rated

Answer

The position vector rr is given by integrating the velocity:

r=extbfvdt=(3t2extbfi2textbfj)dtr = \int extbf{v} \, dt = \int (3t^{2} extbf{i} - 2t extbf{j}) \, dt

This gives:

r=t3extbfit2extbfj+Cr = t^{3} extbf{i} - t^{2} extbf{j} + C

Using the initial condition when t=1t=1, r=extbfjr = - extbf{j}, we can find CC:

13extbfi12extbfj+C=extbfj1^{3} extbf{i} - 1^{2} extbf{j} + C = - extbf{j}

This implies:

C=extbfiextbfjC = - extbf{i} - extbf{j}

Thus, the expression becomes:

r=t3extbfit2extbfjextbfiextbfj=(t31)extbfi(t2+1)extbfjr = t^{3} extbf{i} - t^{2} extbf{j} - extbf{i} - extbf{j} = (t^{3} - 1) extbf{i} - (t^{2} + 1) extbf{j}

Step 4

Find the exact distance of P from O at the instant when P is moving with speed 10 m s−1

98%

120 rated

Answer

First, find the speed:

extbfv=extspeed=(3t2)2+(2t)2| extbf{v}| = ext{speed} = \sqrt{(3t^{2})^{2} + (-2t)^{2}}

Setting this equal to 10:

9t4+4t2=10\sqrt{9t^{4} + 4t^{2}} = 10

Squaring both sides:

9t4+4t2=1009t^{4} + 4t^{2} = 100

Letting u=t2u = t^{2}, we have:

9u2+4u100=09u^{2} + 4u - 100 = 0

Using the quadratic formula:

u=4±424910029u = \frac{-4 \pm \sqrt{4^{2} - 4 \cdot 9 \cdot -100}}{2 \cdot 9}

Calculating:

After solving, we find:

u=4u = 4\nso t=2t=2.

Next, find rr at t=2t=2:

r=(231)extbfi(22+1)extbfj=7extbfi5extbfjr = (2^{3} - 1) extbf{i} - (2^{2} + 1) extbf{j} = 7 extbf{i} - 5 extbf{j}

The distance is:

r=72+(5)2=49+25=74|r| = \sqrt{7^{2} + (-5)^{2}} = \sqrt{49 + 25} = \sqrt{74}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;