Photo AI

1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$ where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 3 - 2014 - Paper 8

Question icon

Question 3

1.-(a)-Find-the-binomial-expansion-of--$$\frac{1}{\sqrt{9---10x}}$$--where-$|x|-<-\frac{9}{10}$,-in-ascending-powers-of-$x$-up-to-and-including-the-term-in-$x^2$-Edexcel-A-Level Maths Pure-Question 3-2014-Paper 8.png

1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$ where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$. Gi... show full transcript

Worked Solution & Example Answer:1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$ where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 3 - 2014 - Paper 8

Step 1

Find the binomial expansion of $$ \frac{1}{\sqrt{9 - 10x}} $$

96%

114 rated

Answer

To find the binomial expansion of 1910x\frac{1}{\sqrt{9 - 10x}}, we first rewrite it:

19(1109x)=13(9(1109x))12\frac{1}{\sqrt{9(1 - \frac{10}{9}x)}} = \frac{1}{3}\cdot (9(1 - \frac{10}{9}x))^{-\frac{1}{2}}.

Using the binomial expansion for (1+u)n(1 + u)^{n} where n=12n = -\frac{1}{2} and u=109xu = -\frac{10}{9}x gives:

(1109x)12=1+12(109x)+(12)(32)2!(109x)2+...(1 - \frac{10}{9}x)^{-\frac{1}{2}} = 1 + \frac{1}{2}\left(-\frac{10}{9}x\right) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}\left(-\frac{10}{9}x\right)^2 + ...

Calculating the first three terms:

  1. The constant term: 1
  2. The coefficient of xx: 1018=59-\frac{10}{18} = -\frac{5}{9}
  3. The coefficient of x2x^2: 5910081=500729\frac{5}{9} \cdot \frac{100}{81} = \frac{500}{729}

Thus, the expansion to the second order term is given by:

1910x=13(159x+5001458x2+...)\frac{1}{\sqrt{9 - 10x}} = \frac{1}{3} \left(1 - \frac{5}{9}x + \frac{500}{1458}x^2 + ...\right)

Therefore:

1910x=13527x+5004374x2+...\frac{1}{\sqrt{9 - 10x}} = \frac{1}{3} - \frac{5}{27}x + \frac{500}{4374}x^2 + ....

Step 2

Hence, or otherwise, find the expansion of $$ \frac{3 + x}{\sqrt{9 - 10x}} $$

99%

104 rated

Answer

Using the result from part (a), we can substitute it into our expression:

3+x910x=(3+x)(13527x+5004374x2+...)\frac{3 + x}{\sqrt{9 - 10x}} = (3 + x) \left( \frac{1}{3} - \frac{5}{27}x + \frac{500}{4374}x^2 + ... \right).

This expands to:

  1. The constant term: 313=13 \cdot \frac{1}{3} = 1.
  2. The coefficient of xx: 3527+113=1527+927=627=293 \cdot -\frac{5}{27} + 1 \cdot \frac{1}{3} = -\frac{15}{27} + \frac{9}{27} = -\frac{6}{27} = -\frac{2}{9}.
  3. The coefficient of x2x^2: 35004374+5271=1500437451624374=15008104374=6904374=1157293 \cdot \frac{500}{4374} + -\frac{5}{27} \cdot 1 = \frac{1500}{4374} - \frac{5 \cdot 162}{4374} = \frac{1500 - 810}{4374} = \frac{690}{4374} = \frac{115}{729}.

Thus, the final expansion is:

3+x910x=129x+115729x2+...\frac{3 + x}{\sqrt{9 - 10x}} = 1 - \frac{2}{9}x + \frac{115}{729}x^2 + ....

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;