Photo AI

1. (a) Find the value of \( \frac{dy}{dx} \) at the point where \( x = 2 \) on the curve with equation \( y = x^2 \sqrt{5x - 1} \) - Edexcel - A-Level Maths Pure - Question 2 - 2009 - Paper 2

Question icon

Question 2

1.-(a)-Find-the-value-of-\(-\frac{dy}{dx}-\)-at-the-point-where-\(-x-=-2-\)-on-the-curve-with-equation---\(-y-=-x^2-\sqrt{5x---1}-\)-Edexcel-A-Level Maths Pure-Question 2-2009-Paper 2.png

1. (a) Find the value of \( \frac{dy}{dx} \) at the point where \( x = 2 \) on the curve with equation \( y = x^2 \sqrt{5x - 1} \). (b) Differentiate \( \frac{\... show full transcript

Worked Solution & Example Answer:1. (a) Find the value of \( \frac{dy}{dx} \) at the point where \( x = 2 \) on the curve with equation \( y = x^2 \sqrt{5x - 1} \) - Edexcel - A-Level Maths Pure - Question 2 - 2009 - Paper 2

Step 1

Find the value of \( \frac{dy}{dx} \) at the point where \( x = 2 \)

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we first apply the product rule. The equation is given as:

[ y = x^2 \sqrt{5x - 1} ]

Using the product rule: [ \frac{dy}{dx} = \frac{d}{dx}(x^2) \cdot \sqrt{5x - 1} + x^2 \cdot \frac{d}{dx}(\sqrt{5x - 1}) ]

Calculating each part: [ \frac{d}{dx}(x^2) = 2x ]

For the second part, we differentiate ( \sqrt{5x - 1} ) using the chain rule: [ \frac{d}{dx}(\sqrt{5x - 1}) = \frac{1}{2\sqrt{5x - 1}} \cdot 5 = \frac{5}{2\sqrt{5x - 1}} ]

Now combine these: [ \frac{dy}{dx} = 2x \cdot \sqrt{5x - 1} + x^2 \cdot \frac{5}{2\sqrt{5x - 1}} ]

Substituting ( x = 2 ): [ \frac{dy}{dx} = 2(2) \cdot \sqrt{5(2) - 1} + (2^2) \cdot \frac{5}{2\sqrt{5(2) - 1}} ] [ = 4 \cdot \sqrt{10 - 1} + 4 \cdot \frac{5}{2\sqrt{10 - 1}} ] [ = 4 \cdot 3 + 4 \cdot \frac{5}{6} ] [ = 12 + \frac{20}{6} = 12 + \frac{10}{3} = \frac{36}{3} + \frac{10}{3} = \frac{46}{3} ] Thus, ( \frac{dy}{dx} = \frac{46}{3} ) at ( x = 2 ).

Step 2

Differentiate \( \frac{\sin 2x}{x^2} \) with respect to \( x \)

99%

104 rated

Answer

To differentiate ( \frac{\sin 2x}{x^2} ), we use the quotient rule: [ \frac{d}{dx}(\frac{u}{v}) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} ] Where ( u = \sin 2x ) and ( v = x^2 ).

Firstly, we need to find ( \frac{du}{dx} ) and ( \frac{dv}{dx} ): [ \frac{du}{dx} = 2\cos 2x ] (using the chain rule)
[ \frac{dv}{dx} = 2x ]

Now apply the quotient rule: [ \frac{d}{dx}(\frac{\sin 2x}{x^2}) = \frac{x^2 \cdot 2\cos 2x - \sin 2x \cdot 2x}{(x^2)^2} ] [ = \frac{2x^2\cos 2x - 2x\sin 2x}{x^4} ] [ = \frac{2x (x \cos 2x - \sin 2x)}{x^4} = \frac{2(x \cos 2x - \sin 2x)}{x^3} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;