Photo AI

3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \text{cos}(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$.\n\n(b) Hence, or otherwise, solve the equation\n$5 \, ext{cos} \, x - 3 \, ext{sin} \, x = 4$\nfor $0 \leq x < 2\pi$, giving your answers to 2 decimal places. - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Question icon

Question 4

3.-(a)-Express-$5-\,--ext{cos}-\,-x---3-\,--ext{sin}-\,-x$-in-the-form-$R-\text{cos}(x-+-\alpha)$,-where-$R->-0$-and-$0-<-\alpha-<-\frac{1}{2}-\pi$.\n\n(b)-Hence,-or-otherwise,-solve-the-equation\n$5-\,--ext{cos}-\,-x---3-\,--ext{sin}-\,-x-=-4$\nfor-$0-\leq-x-<-2\pi$,-giving-your-answers-to-2-decimal-places.-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 2.png

3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \text{cos}(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$.\n\n(b) Hence, or... show full transcript

Worked Solution & Example Answer:3. (a) Express $5 \, ext{cos} \, x - 3 \, ext{sin} \, x$ in the form $R \text{cos}(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$.\n\n(b) Hence, or otherwise, solve the equation\n$5 \, ext{cos} \, x - 3 \, ext{sin} \, x = 4$\nfor $0 \leq x < 2\pi$, giving your answers to 2 decimal places. - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Step 1

Express $5 \, \text{cos} \, x - 3 \, \text{sin} \, x$ in the form $R \text{cos}(x + \alpha)$

96%

114 rated

Answer

To convert the expression 5cosx3sinx5 \, \text{cos} \, x - 3 \, \text{sin} \, x into the form Rcos(x+α)R \text{cos}(x + \alpha), we start by equating coefficients based on the cosine and sine components.\n\n1. Find RR: We have the coefficients as A=5A = 5 and B=3B = -3. The magnitude RR can be calculated using the formula:
R=A2+B2=52+(3)2=25+9=345.831 (to three decimal places)R = \sqrt{A^2 + B^2} = \sqrt{5^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.831 \text{ (to three decimal places)}\n\n2. Find α\alpha: To find α\alpha, we use the tangent ratio:
tan(α)=BA=35α=arctan(35)0.5404 radians\tan(\alpha) = \frac{B}{A} = \frac{-3}{5} \Rightarrow \alpha = \arctan\left(\frac{-3}{5}\right) \approx -0.5404 \text{ radians}\n Since α\alpha must be positive, we can consider the angle in appropriate quadrants if necessary. Hence, we will write our expression as: 5cosx3sinx=34cos(x+0.5404).5 \text{cos} x - 3 \text{sin} x = \sqrt{34} \text{cos}(x + 0.5404).

Step 2

Hence, or otherwise, solve the equation $5 \, \text{cos} \, x - 3 \, \text{sin} \, x = 4$

99%

104 rated

Answer

We start with the equation:
34cos(x+0.5404)=4.\sqrt{34} \text{cos}(x + 0.5404) = 4.\n\n1. Rearranging the equation:
cos(x+0.5404)=434.\text{cos}(x + 0.5404) = \frac{4}{\sqrt{34}}.\n Evaluating 4340.6859\frac{4}{\sqrt{34}} \approx 0.6859.\n\n2. Finding xx:
Due to the value of cosine, we find the general solution:
x+0.5404=cos1(0.6859)andx+0.5404=2πcos1(0.6859).x + 0.5404 = \cos^{-1}(0.6859) \quad \text{and} \quad x + 0.5404 = 2\pi - \cos^{-1}(0.6859).\n\n3. Calculating the values:

  • First solution:
    x=cos1(0.6859)0.54040.1843.x = \cos^{-1}(0.6859) - 0.5404 \approx 0.1843.\n - Second solution:
    x=2πcos1(0.6859)0.54045.7216.x = 2\pi - \cos^{-1}(0.6859) - 0.5404 \approx 5.7216.\n\nThus, the solutions within the interval 0x<2π0 \, \leq x < 2\pi are:\n x0.18,5.72 (to two decimal places)x \approx 0.18, 5.72 \text{ (to two decimal places)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;