Photo AI

Solve for $0 \leq x < 360^\circ$, giving your answers in degrees to 1 decimal place, 3 sin$(x+45^\circ) = 2$ - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 2

Question icon

Question 8

Solve-for-$0-\leq-x-<-360^\circ$,-giving-your-answers-in-degrees-to-1-decimal-place,-3-sin$(x+45^\circ)-=-2$-Edexcel-A-Level Maths Pure-Question 8-2011-Paper 2.png

Solve for $0 \leq x < 360^\circ$, giving your answers in degrees to 1 decimal place, 3 sin$(x+45^\circ) = 2$. Find, for $0 \leq x < 2\pi$, all the solutions of 2sin... show full transcript

Worked Solution & Example Answer:Solve for $0 \leq x < 360^\circ$, giving your answers in degrees to 1 decimal place, 3 sin$(x+45^\circ) = 2$ - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 2

Step 1

Solve for $0 \leq x < 360^\circ$, giving your answers in degrees to 1 decimal place, 3 sin$(x+45^\circ) = 2$

96%

114 rated

Answer

To solve the equation, we first isolate sin(x+45)(x + 45^\circ):

3sin(x+45)=2    sin(x+45)=233 \sin(x + 45^\circ) = 2 \implies \sin(x + 45^\circ) = \frac{2}{3}

Next, we find the value of (x+45)(x + 45^\circ) using the inverse sine function:

(x+45)=sin1(23)(x + 45^\circ) = \sin^{-1}\left(\frac{2}{3}\right)

Calculating this gives us:

(x+45)41.81(x + 45^\circ) \approx 41.81^\circ

Since sine is positive in the first and second quadrants, we have another solution:

(x+45)=18041.81=138.19(x + 45^\circ) = 180^\circ - 41.81^\circ = 138.19^\circ

Now we isolate xx:

  1. For the first solution: $$ (not valid in the given range)
  2. For the second solution:
Thus, we need to adjust $x$ for periodicity: 3. Finding another angle in the allowed range: $$x = 356.81^\circ - 45^\circ = 311.81^\circ\

Finally, the valid solutions are:

Answer: 93.2,311.8\text{Answer: } 93.2^\circ, 311.8^\circ

Step 2

Find, for $0 \leq x < 2\pi$, all the solutions of 2sin$^2 x + 2 = 7\cos x$

99%

104 rated

Answer

First, we rewrite the equation:

2sin2x7cosx+2=02\sin^2 x - 7\cos x + 2 = 0

Using the identity sin2x=1cos2x\sin^2 x = 1 - \cos^2 x we convert the equation to:

2(1cos2x)7cosx+2=0    2cos2x7cosx+4=02(1 - \cos^2 x) - 7\cos x + 2 = 0 \implies -2\cos^2 x - 7\cos x + 4 = 0

Multiplying through by -1 gives:

2cos2x+7cosx4=02\cos^2 x + 7\cos x - 4 = 0

Next, we apply the quadratic formula:

cosx=b±b24ac2a=7±7242(4)22\cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 2 \cdot (-4)}}{2 \cdot 2}

Calculating the values:

cosx=7±49+324=7±814=7±94\cos x = \frac{-7 \pm \sqrt{49 + 32}}{4} = \frac{-7 \pm \sqrt{81}}{4} = \frac{-7 \pm 9}{4}

Thus we find two potential solutions:

  1. cosx=24=12\cos x = \frac{2}{4} = \frac{1}{2}
  2. cosx=164=4\cos x = \frac{-16}{4} = -4 (not valid, since cosine values must be between -1 and 1)

From the first solution: cosx=12\cos x = \frac{1}{2} gives us:

Thus, the solutions in radians are:

Answer: xπ3,5π3\text{Answer: } x \approx \frac{\pi}{3}, \frac{5\pi}{3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;