Photo AI
Question 9
The line with equation $y = 3x + 20$ cuts the curve with equation $y = x^3 + 6x + 10$ at the points A and B, as shown in Figure 2. (a) Use algebra to find the coord... show full transcript
Step 1
Answer
To find the coordinates of points A and B where the line intersects the curve, we set the equations equal to each other:
Rearranging gives us:
This simplifies to:
Now we can find the roots of this cubic equation using trial and error, synthetic division, or a numerical method. After testing various values, we find:
For ,
For ,
For ,
Continuing, we find that:
For ,
At this point, synthetic division may be appropriate, finding other possible rational roots or approximating numerically can yield:
Assume , we can solve for and . Solving yields and or similar intersections on the function.
Step 2
Answer
To find the area of the shaded region S, we need to calculate the integral of the area between the curves from point A to point B. The area can be determined using the definite integral:
Where:
Calculating the definite integral:
Substituting:$\int_{x_1}^{x_2} (x^3 + 3x - 10) , dx$$
Report Improved Results
Recommend to friends
Students Supported
Questions answered