Photo AI

9. (a) Express $2 \, ext{sin} \theta - 4 \, \text{cos} \theta$ in the form $R \text{sin}(\theta - \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2014 - Paper 5

Question icon

Question 1

9.-(a)-Express-$2-\,--ext{sin}-\theta---4-\,-\text{cos}-\theta$-in-the-form-$R-\text{sin}(\theta---\alpha)$,-where-$R$-and-$\alpha$-are-constants,-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 1-2014-Paper 5.png

9. (a) Express $2 \, ext{sin} \theta - 4 \, \text{cos} \theta$ in the form $R \text{sin}(\theta - \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \... show full transcript

Worked Solution & Example Answer:9. (a) Express $2 \, ext{sin} \theta - 4 \, \text{cos} \theta$ in the form $R \text{sin}(\theta - \alpha)$, where $R$ and $\alpha$ are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 1 - 2014 - Paper 5

Step 1

Express $2 \, \text{sin} \theta - 4 \, \text{cos} \theta$ in the form $R \text{sin}(\theta - \alpha)$

96%

114 rated

Answer

We start with the expression:
2sinθ4cosθ2 \, \text{sin} \theta - 4 \, \text{cos} \theta
We need to rewrite it as Rsin(θα)R \text{sin}(\theta - \alpha).
From the identity, we know:
Rsin(θα)=R(sinθcosαcosθsinα)R \text{sin}(\theta - \alpha) = R (\text{sin} \theta \cos \alpha - \text{cos} \theta \sin \alpha)
By equating coefficients:

  • We set Rcosα=2R \cos \alpha = 2 and Rsinα=4R \sin \alpha = -4.
    To find RR, we use:
    R=(22)+(42)=4+16=20=25R = \sqrt{(2^2) + (-4^2)} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}
    Next, we find α\alpha:
    tanα=42=2\tan \alpha = \frac{-4}{2} = -2
    Therefore,
    α=tan1(2)\alpha = \tan^{-1}(-2)
    The angle in the correct quadrant is α=arctan(2)+π\alpha = \text{arctan}(-2) + \pi which gives us α1.107\alpha \approx 1.107.

Step 2

Find the maximum value of $H(\theta)$

99%

104 rated

Answer

To find the maximum value of
H(θ)=4+5(2sin3θ4cos3θ)2H(\theta) = 4 + 5(2 \text{sin} 3\theta - 4 \text{cos} 3\theta)^2
First, we need to evaluate the maximum of 2sin3θ4cos3θ2 \text{sin} 3\theta - 4 \text{cos} 3\theta.
The maximum occurs when
22+(4)2=20\sqrt{2^2 + (-4)^2} = \sqrt{20}
The maximum value for the square is 20. Thus,
H(θ)=4+5(20)2=4+5(20)=104H(\theta) = 4 + 5(\sqrt{20})^2 = 4 + 5(20) = 104.

Step 3

Find the smallest value of $\theta$, for $0 \leq \theta < \pi$, at which this maximum value occurs

96%

101 rated

Answer

To find the value of θ\theta where
H(θ)=104H(\theta) = 104, we set
2sin3θ4cos3θ=202 \text{sin} 3\theta - 4 \text{cos} 3\theta = \sqrt{20}.
We can use
tan(3θ)=42\tan(3\theta) = \frac{-4}{2}, which gives us specific values for 3θ3\theta.
Solving gives us:
3θ=π2+nπ, for nZ3\theta = \frac{\pi}{2} + n\pi, \text{ for } n \in \mathbb{Z}
Therefore, the least value of θ\theta is
θ=π6+nπ3\theta = \frac{\pi}{6} + \frac{n\pi}{3} where we take n=0n = 0.

Step 4

Find the minimum value of $H(\theta)$

98%

120 rated

Answer

The minimum value occurs when the expression
2sin3θ4cos3θ2 \text{sin} 3\theta - 4 \text{cos} 3\theta is minimized.
Its minimum value would be 20-\sqrt{20}.
Evaluating gives us:
H(θ)=4+5(20)2=4+5(20)=104H(\theta) = 4 + 5(-\sqrt{20})^2 = 4 + 5(20) = 104.

Step 5

Find the largest value of $\theta$, for $0 \leq \theta < \pi$, at which this minimum value occurs

97%

117 rated

Answer

To find when this minimum occurs, we work with:
3θ=3π2+nπ3\theta = \frac{3\pi}{2} + n\pi
Solving gives us θ=π2\theta = \frac{\pi}{2}, thus the maximum point reflects the angular occurrence for the minimum value.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;