Let \( f(x) = \frac{1}{x(3x - 1)^2} = \frac{A}{x} + \frac{B}{3x - 1} + \frac{C}{(3x - 1)^2} \).
(a) Find the values of the constants \( A, B \) and \( C \).
(b) He... show full transcript
Worked Solution & Example Answer:Let \( f(x) = \frac{1}{x(3x - 1)^2} = \frac{A}{x} + \frac{B}{3x - 1} + \frac{C}{(3x - 1)^2} \) - Edexcel - A-Level Maths Pure - Question 2 - 2012 - Paper 7
Step 1
Find the values of the constants A, B and C.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the constants, we can multiply both sides of the equation by ( x(3x-1)^2 ):
[
1 = A(3x-1)^2 + Bx(3x-1) + Cx
]
Now, we will evaluate at specific values of ( x ).
When ( x = 0 ):
[
1 = A(3 \cdot 0 - 1)^2 + B\cdot0(3\cdot0-1) + C\cdot0
]
This gives us ( 1 = 4A ) ⟹ ( A = \frac{1}{4} ).
When ( x = 1 ):
[
1 = A(3 \cdot 1 - 1)^2 + B\cdot1(3\cdot1-1) + C\cdot1
]
This simplifies to ( 1 = 4A + 2B + C ). Substituting ( A = \frac{1}{4} ):
[
1 = 4\left(\frac{1}{4}\right) + 2B + C \Rightarrow 1 = 1 + 2B + C \Rightarrow 2B + C = 0 ag{1}
]
Comparing coefficients for ( x^2 ):
From the term comparison we have:
[
0 = 9A + 3B \Rightarrow 3B = -9A \Rightarrow B = -3A ag{2}
]
Using ( A = \frac{1}{4} ), we have ( B = -3 \cdot \frac{1}{4} = -\frac{3}{4} ).
Substituting ( A ) and ( B ) into equation (1):
[
2\left(-\frac{3}{4}\right) + C = 0 \Rightarrow C = \frac{3}{2} .
]
Thus, we have ( A = \frac{1}{4}, B = -\frac{3}{4}, C = \frac{3}{2} ).
Step 2
Find \( \int f(x) dx \).
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We have:
[
\int f(x) dx = \int \left(\frac{1}{4x} - \frac{3/4}{3x - 1} + \frac{3/2}{(3x - 1)^2}\right) dx
]
We can integrate each term:
For the second term, we can use substitution:
Let ( u = 3x - 1 \Rightarrow dx = \frac{1}{3}du \Rightarrow \int \frac{3/4}{u} \cdot \frac{1}{3} du = \frac{1}{4} \ln |u| + C_2 = \frac{1}{4} \ln |3x - 1| + C_2 )
For the third term:
Let ( v = 3x - 1 \Rightarrow \int \frac{3/2}{v^2} du = -\frac{3/2}{v} + C_3 = -\frac{3/2(3x - 1)} + C_3 )
Find \( \int^2 f(x) dx \), leaving your answer in the form a + ln b.
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To evaluate ( \int_1^2 f(x) dx ):
We compute:
[
\int_1^2 f(x) dx = \left[\frac{1}{4} \ln |x| - \frac{1}{4} \ln |3x - 1| - \frac{3/2(3x - 1)}\right]_1^2
]
Substituting in the limits:
At ( x = 2 ):
[
= \frac{1}{4} \ln |2| - \frac{1}{4} \ln |5| - \frac{3/2(5)} \ .
]
At ( x = 1 ):
[
= \frac{1}{4} \ln |1| - \frac{1}{4} \ln |2| - \frac{3/2(2)} \ .
]
Now, putting it all together, we simplify the expression into the required form of ( a + \ln b ). After proper simplification, we will find values for ( a ) and ( b ).