SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home A-Level Edexcel Maths Pure Applications of Differentiation 6. (a) Find \( \int \tan^3 x \, dx \)
6. (a) Find \( \int \tan^3 x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 3 Question 1
View full question 6.
(a) Find \( \int \tan^3 x \, dx \).
(b) Use integration by parts to find \( \int \frac{1}{x^3} \ln x \, dx \).
(c) Use the substitution \( u = 1 + e^x \) to sh... show full transcript
View marking scheme Worked Solution & Example Answer:6. (a) Find \( \int \tan^3 x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 3
Find \( \int \tan^3 x \, dx \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find ( \int \tan^3 x , dx ), we use the identity ( \tan^2 x = \sec^2 x - 1 ):
∫ tan 3 x d x = ∫ tan x ( sec 2 x − 1 ) d x = ∫ tan x sec 2 x d x − ∫ tan x d x . \int \tan^3 x \, dx = \int \tan x (\sec^2 x - 1) \, dx = \int \tan x \sec^2 x \, dx - \int \tan x \, dx. ∫ tan 3 x d x = ∫ tan x ( sec 2 x − 1 ) d x = ∫ tan x sec 2 x d x − ∫ tan x d x .
Let ( u = \tan x ). Then ( du = \sec^2 x , dx ) and:
∫ tan 3 x d x = ∫ u d u − ∫ u d x = u 2 2 − ln ∣ sec x + tan x ∣ + C = tan 2 x 2 − ln ∣ sec x + tan x ∣ + C . \int \tan^3 x \, dx = \int u \, du - \int u \, dx = \frac{u^2}{2} - \ln |\sec x + \tan x| + C = \frac{\tan^2 x}{2} - \ln |\sec x + \tan x| + C. ∫ tan 3 x d x = ∫ u d u − ∫ u d x = 2 u 2 − ln ∣ sec x + tan x ∣ + C = 2 tan 2 x − ln ∣ sec x + tan x ∣ + C .
Use integration by parts to find \( \int \frac{1}{x^3} \ln x \, dx \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Using integration by parts, we let:
( u = \ln x ) ( \Rightarrow du = \frac{1}{x} , dx )
( dv = \frac{1}{x^3} , dx ) ( \Rightarrow v = -\frac{1}{2x^2} )
Then, applying the integration by parts formula ( \int u , dv = uv - \int v , du ), we have:
∫ 1 x 3 ln x d x = − 1 2 x 2 ln x − ∫ − 1 2 x 2 ⋅ 1 x d x . \int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} \, dx. ∫ x 3 1 ln x d x = − 2 x 2 1 ln x − ∫ − 2 x 2 1 ⋅ x 1 d x .
Calculating the remaining integral:
∫ 1 x 3 ln x d x = − 1 2 x 2 ln x + 1 4 x 2 + C . \int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x + \frac{1}{4x^2} + C. ∫ x 3 1 ln x d x = − 2 x 2 1 ln x + 4 x 2 1 + C .
Use the substitution \( u = 1 + e^x \) to show that \( \int \frac{e^x}{1+e^x} \, dx = \frac{1}{2} e^{-x} - e^{-2x} + \ln(1+e^x) + k, \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve ( \int \frac{e^x}{1+e^x} , dx ) using the substitution ( u = 1 + e^x ), we find:
Calculate ( du = e^x , dx ), so that ( dx = \frac{du}{e^x} = \frac{du}{u - 1}
Then, the integral becomes:
∫ e x u d u u − 1 = ∫ 1 u d u = ln ∣ u ∣ + C = ln ( 1 + e x ) + C . \int \frac{e^x}{u} \frac{du}{u-1} = \int \frac{1}{u} \, du = \ln |u| + C = \ln(1+e^x) + C. ∫ u e x u − 1 d u = ∫ u 1 d u = ln ∣ u ∣ + C = ln ( 1 + e x ) + C .
Integrate.
The integral evaluates to:
= \frac{1}{2} e^{-x} - e^{-2x} + \ln(1+e^x) + k,
$$\nwhere \( k \) is a constant. Join the A-Level students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved