Photo AI

6. (a) Find \( \int \tan^3 x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 3

Question icon

Question 1

6.-(a)-Find-\(-\int-\tan^3-x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 1-2009-Paper 3.png

6. (a) Find \( \int \tan^3 x \, dx \). (b) Use integration by parts to find \( \int \frac{1}{x^3} \ln x \, dx \). (c) Use the substitution \( u = 1 + e^x \) to sh... show full transcript

Worked Solution & Example Answer:6. (a) Find \( \int \tan^3 x \, dx \) - Edexcel - A-Level Maths Pure - Question 1 - 2009 - Paper 3

Step 1

Find \( \int \tan^3 x \, dx \)

96%

114 rated

Answer

To find ( \int \tan^3 x , dx ), we use the identity ( \tan^2 x = \sec^2 x - 1 ):

tan3xdx=tanx(sec2x1)dx=tanxsec2xdxtanxdx.\int \tan^3 x \, dx = \int \tan x (\sec^2 x - 1) \, dx = \int \tan x \sec^2 x \, dx - \int \tan x \, dx.

Let ( u = \tan x ). Then ( du = \sec^2 x , dx ) and:

tan3xdx=uduudx=u22lnsecx+tanx+C=tan2x2lnsecx+tanx+C.\int \tan^3 x \, dx = \int u \, du - \int u \, dx = \frac{u^2}{2} - \ln |\sec x + \tan x| + C = \frac{\tan^2 x}{2} - \ln |\sec x + \tan x| + C.

Step 2

Use integration by parts to find \( \int \frac{1}{x^3} \ln x \, dx \)

99%

104 rated

Answer

Using integration by parts, we let:

  • ( u = \ln x ) ( \Rightarrow du = \frac{1}{x} , dx )
  • ( dv = \frac{1}{x^3} , dx ) ( \Rightarrow v = -\frac{1}{2x^2} )

Then, applying the integration by parts formula ( \int u , dv = uv - \int v , du ), we have:

1x3lnxdx=12x2lnx12x21xdx.\int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} \, dx.

Calculating the remaining integral:

1x3lnxdx=12x2lnx+14x2+C.\int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x + \frac{1}{4x^2} + C.

Step 3

Use the substitution \( u = 1 + e^x \) to show that \( \int \frac{e^x}{1+e^x} \, dx = \frac{1}{2} e^{-x} - e^{-2x} + \ln(1+e^x) + k, \)

96%

101 rated

Answer

To solve ( \int \frac{e^x}{1+e^x} , dx ) using the substitution ( u = 1 + e^x ), we find:

  1. Calculate ( du = e^x , dx ), so that ( dx = \frac{du}{e^x} = \frac{du}{u - 1}

Then, the integral becomes:

exuduu1=1udu=lnu+C=ln(1+ex)+C.\int \frac{e^x}{u} \frac{du}{u-1} = \int \frac{1}{u} \, du = \ln |u| + C = \ln(1+e^x) + C.
  1. Integrate.

The integral evaluates to:

= \frac{1}{2} e^{-x} - e^{-2x} + \ln(1+e^x) + k, $$\nwhere \( k \) is a constant.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;