Photo AI

The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \ y = 1 - 2 \, \text{cos} \, t, \quad \frac{2 \pi}{3} \leq t \leq \frac{2 \pi}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 8

Question icon

Question 8

The-curve-shown-in-Figure-3-has-parametric-equations--$x-=-t---4-\,--ext{sin}-\,-t,-\-y-=-1---2-\,-\text{cos}-\,-t,-\quad-\frac{2-\pi}{3}-\leq-t-\leq-\frac{2-\pi}{3}$--The-point-$A$,-with-coordinates-$(k,-1)$,-lies-on-the-curve-Edexcel-A-Level Maths Pure-Question 8-2014-Paper 8.png

The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \ y = 1 - 2 \, \text{cos} \, t, \quad \frac{2 \pi}{3} \leq t \leq \frac{2 \pi}{3}... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \ y = 1 - 2 \, \text{cos} \, t, \quad \frac{2 \pi}{3} \leq t \leq \frac{2 \pi}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 8

Step 1

find the exact value of k

96%

114 rated

Answer

To find the exact value of kk, we start by substituting y=1y = 1 into the equation for yy:

1=12cost1 = 1 - 2 \, \text{cos} \, t

Rearranging gives:

2cost=02 \, \text{cos} \, t = 0

So, ( \text{cos} , t = 0 ), which occurs at:

t=π2+nπ, where nZt = \frac{\pi}{2} + n\pi, \text{ where } n \in \mathbb{Z}

Given the constraint 2π3t2π3\frac{2\pi}{3} \leq t \leq \frac{2\pi}{3}, the possible value of tt is:

t=3π2t = \frac{3\pi}{2}

Now substituting tt back into the equation for xx:

x=3π24sin(3π2)x = \frac{3\pi}{2} - 4 \text{sin} \left( \frac{3\pi}{2} \right)

As sin(3π2)=1\text{sin}\left( \frac{3\pi}{2}\right) = -1:

x=3π24(1)=3π2+4x = \frac{3\pi}{2} - 4(-1) = \frac{3\pi}{2} + 4

Therefore, the exact value of kk is:

k=3π2+4k = \frac{3\pi}{2} + 4

Step 2

find the gradient of the curve at the point A

99%

104 rated

Answer

To find the gradient of the curve at point AA where t=3π2t = \frac{3\pi}{2}, we first calculate ( \frac{dx}{dt} ) and ( \frac{dy}{dt} ):

  1. Derivative of xx:

dxdt=14cost\frac{dx}{dt} = 1 - 4 \text{cos} \, t

  1. Derivative of yy:

dydt=2sint\frac{dy}{dt} = 2 \text{sin} \, t

Next, we evaluate ( \frac{dx}{dt} ) and ( \frac{dy}{dt} ) at t=3π2t = \frac{3\pi}{2}:

  • For dxdt\frac{dx}{dt}: dxdt=14cos(3π2)=14(0)=1\frac{dx}{dt} = 1 - 4 \text{cos} \left( \frac{3\pi}{2} \right) = 1 - 4(0) = 1

  • For dydt\frac{dy}{dt}: dydt=2sin(3π2)=2(1)=2\frac{dy}{dt} = 2 \text{sin} \left( \frac{3\pi}{2} \right) = 2(-1) = -2

Thus, the gradient (mm) of the curve is given by:

m=dy/dtdx/dt=21=2m = \frac{dy/dt}{dx/dt} = \frac{-2}{1} = -2

Step 3

Find the value of t at this point, showing each step in your working and giving your answer to 4 decimal places.

96%

101 rated

Answer

To find the value of tt where the gradient is 12-\frac{1}{2}:

Given the equation for the gradient:

dydx=2sint4+4cost=12\frac{dy}{dx} = \frac{2 \text{sin} \, t}{-4 + 4 \text{cos} \, t} = -\frac{1}{2}

Cross-multiplying results in:

2(2sint)=(4+4cost)2(2 \text{sin} \, t) = -(-4 + 4 \text{cos} \, t)

This simplifies to:

4sint=44cost4 \text{sin} \, t = 4 - 4 \text{cos} \, t

Dividing through by 4 gives:

sint=1cost\text{sin} \, t = 1 - \text{cos} \, t

Using the identity extsin2t+cos2t=1 ext{sin}^2 t + \text{cos}^2 t = 1 and substituting extsint=1cost ext{sin} \, t = 1 - \text{cos} \, t:

(1cost)2+cos2t=1(1 - \text{cos} \, t)^2 + \text{cos}^2 \, t = 1

Expanding and simplifying:

12cost+cos2t+cos2t=11 - 2\text{cos} \, t + \text{cos}^2 \, t + \text{cos}^2 \, t = 1

This leads to:

2cos2t2cost=02 \text{cos}^2 \, t - 2\text{cos} \, t = 0

Factoring out 2cost2\text{cos} \, t:

2cost(cost1)=02 \text{cos} \, t (\text{cos} \, t - 1) = 0

So cost=0\text{cos} \, t = 0 or cost=1\text{cos} \, t = 1. The solution gives:

  • When cost=0,sint=1, t=π2+2nπ and t=3π2+2nπ,nZ\text{cos} \, t = 0, \text{sin} \, t = 1,\ t = \frac{\pi}{2} + 2n\pi \text{ and } t = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}
  • The relevant tt is 3π2+2nπ\frac{3\pi}{2} + 2n\pi;

Next, consider the value of t=3π2t = \frac{3\pi}{2}:

Consolidating the numerical value we find:

32π=4.7124\frac{3}{2}\pi = 4.7124 (4 decimal places) Thus, the value of tt is approximately 4.71244.7124.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;