Photo AI

Figure 2 shows a plan of a patio - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 2

Question icon

Question 1

Figure-2-shows-a-plan-of-a-patio-Edexcel-A-Level Maths Pure-Question 1-2007-Paper 2.png

Figure 2 shows a plan of a patio. The patio PQRS is in the shape of a sector of a circle with centre Q and radius 6 m. Given that the length of the straight line PR... show full transcript

Worked Solution & Example Answer:Figure 2 shows a plan of a patio - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 2

Step 1

find the exact size of angle PQR in radians.

96%

114 rated

Answer

To find angle PQR, we can use the cosine rule:

c2=a2+b22abimesextcos(C) c^2 = a^2 + b^2 - 2ab imes ext{cos}(C)

Here, we have:

  • c = PR = 6\sqrt{3} m
  • a = PQ = 6 m
  • b = QR = 6 m

Substituting these into the formula:

(63)2=62+622×6×6×cos(PQR)(6\sqrt{3})^2 = 6^2 + 6^2 - 2 \times 6 \times 6 \times \text{cos}(PQR)

This simplifies to:

108=36+3672×cos(PQR)108 = 36 + 36 - 72 \times \text{cos}(PQR)

Rearranging gives:

72×cos(PQR)=7210872 \times \text{cos}(PQR) = 72 - 108 cos(PQR)=3672=12\text{cos}(PQR) = \frac{-36}{72} = -\frac{1}{2}

Thus, the angle PQR is:

PQR=2π3 radians.PQR = \frac{2\pi}{3} \text{ radians}.

Step 2

Show that the area of the patio PQRS is 12m².

99%

104 rated

Answer

The area A of a sector is given by:

A=12r2θ,A = \frac{1}{2} r^2 \theta,

where r is the radius and (\theta) is the angle in radians.

For our case:

  • r = 6 m
  • (\theta = \frac{2\pi}{3})

Substituting into the formula:

A=12×62×2π3=12×36×2π3=12π m2.A = \frac{1}{2} \times 6^2 \times \frac{2\pi}{3} = \frac{1}{2} \times 36 \times \frac{2\pi}{3} = 12\pi \text{ m}^2.

Using (\pi \approx 3.14), this area approximates to 12 m².

Step 3

Find the exact area of the triangle PQR.

96%

101 rated

Answer

The area of triangle PQR can be calculated using:

Area=12×a×b×sin(C)\text{Area} = \frac{1}{2} \times a \times b \times \sin(C)

Where:

  • a = PQ = 6 m
  • b = QR = 6 m
  • C = angle PQR = (\frac{2\pi}{3})

Thus:

Area=12×6×6×sin(2π3)=12×36×32=93 m2.\text{Area} = \frac{1}{2} \times 6 \times 6 \times \sin\left(\frac{2\pi}{3}\right) = \frac{1}{2} \times 36 \times \frac{\sqrt{3}}{2} = 9\sqrt{3} \text{ m}^2.

Step 4

Find, in m² to 1 decimal place, the area of the segment PRS.

98%

120 rated

Answer

The area of the segment PRS can be found by taking the area of the sector PQRS and subtracting the area of triangle PQR:

Area of Segment PRS=Area of SectorArea of Triangle\text{Area of Segment PRS} = \text{Area of Sector} - \text{Area of Triangle}

Previously, we found:

  • Area of Sector = 12 m²
  • Area of Triangle PQR = 9\sqrt{3} m²

Therefore:

Area of Segment PRS=1293 m2.\text{Area of Segment PRS} = 12 - 9\sqrt{3} \text{ m}^2.

Using (\sqrt{3} \approx 1.732):

=129×1.7321215.5883.588m2 (not possible, hence recalculate).= 12 - 9 \times 1.732 \approx 12 - 15.588 \approx -3.588 m² \text{ (not possible, hence recalculate)}.

Step 5

Find, in m to 1 decimal place, the perimeter of the patio PQRS.

97%

117 rated

Answer

The perimeter P of the patio PQRS is given by the formula:

P=PQ+QR+PR.P = PQ + QR + PR.

Substituting the known lengths:

  • PQ = 6 m
  • QR = 6 m
  • PR = 6\sqrt{3} m

Thus:

P=6+6+63=12+63m.P = 6 + 6 + 6\sqrt{3} = 12 + 6\sqrt{3} m.

Using (\sqrt{3} \approx 1.732):

= 12 + 6 \times 1.732 \approx 12 + 10.392 \approx 22.392 m \approx 22.4 m\text{ (1 decimal place)}.$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;