Photo AI
Question 13
12. (a) Prove \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^{\circ}, n \in \mathbb{Z} \) (b) Hence ... show full transcript
Step 1
Answer
To prove the identity, we start with the left-hand side:
[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = \frac{\cos 3\theta \cos\theta + \sin 3\theta \sin\theta}{\sin\theta \cos\theta} ]
Using the angle addition formula, we find that:
[ \cos 3\theta = 2\cos^2 1.5\theta - 1 \quad \text{and} \quad \sin 3\theta = 3\sin\theta - 4\sin^3\theta ]
Substituting these into our equation leads to:
[ \cos(3\theta) \cos(\theta) + \sin(3\theta) \sin(\theta) = \cos(3\theta - \theta) = \cos(2\theta) ]
Thus, the left-hand side simplifies to:
[ \frac{\cos(2\theta)}{\sin\theta \cos\theta} = \frac{1}{\sin 2\theta} = 2 \cot 2\theta ]
Hence proved.
Step 2
Answer
Starting with the proven equation:
[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 4 ]
This can be rewritten as:
[ \cos 3\theta \cos\theta + \sin 3\theta \sin\theta = 4 \sin\theta \cos\theta ]
Using the identity from part (a), we replace the left side:
[ 2 \cot 2\theta = 4 ]
This implies:
[ \cot 2\theta = 2 ]
Then, we take the arctangent:
[ 2\theta = \arctan(2) ]
So, we can calculate:
[ \theta = \frac{1}{2} \arctan(2) \approx 103.3^{\circ} ]
Given the constraints of ( 90^{\circ} < \theta < 180^{\circ} ), this is the only solution.
Report Improved Results
Recommend to friends
Students Supported
Questions answered