Photo AI

Given that $f(x)$ can be expressed in the form $$f(x) = \frac{A}{(3x + 2)} + \frac{B}{(3x + 2)} + \frac{C}{(1 - x)}, \quad |x| < \frac{2}{3}$$ (a) find the values of $B$ and $C$ and show that $A = 0$ - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Question icon

Question 5

Given-that-$f(x)$-can-be-expressed-in-the-form--$$f(x)-=-\frac{A}{(3x-+-2)}-+-\frac{B}{(3x-+-2)}-+-\frac{C}{(1---x)},-\quad-|x|-<-\frac{2}{3}$$--(a)-find-the-values-of-$B$-and-$C$-and-show-that-$A-=-0$-Edexcel-A-Level Maths Pure-Question 5-2009-Paper 3.png

Given that $f(x)$ can be expressed in the form $$f(x) = \frac{A}{(3x + 2)} + \frac{B}{(3x + 2)} + \frac{C}{(1 - x)}, \quad |x| < \frac{2}{3}$$ (a) find the values ... show full transcript

Worked Solution & Example Answer:Given that $f(x)$ can be expressed in the form $$f(x) = \frac{A}{(3x + 2)} + \frac{B}{(3x + 2)} + \frac{C}{(1 - x)}, \quad |x| < \frac{2}{3}$$ (a) find the values of $B$ and $C$ and show that $A = 0$ - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Step 1

find the values of B and C and show that A = 0

96%

114 rated

Answer

To find the values of BB and CC, substitute suitable values for xx into the identity.

  1. If we let x=23x = -\frac{2}{3}, we get:

    27(23)3+32(23)2+16=A(0)+B(23)+C(1(23))27(\frac{2}{3})^3 + 32(\frac{2}{3})^2 + 16 = A(0) + B(\frac{2}{3}) + C(1 - (-\frac{2}{3}))

  2. This simplifies to find BB:

    B=4B = 4

Next, set x=1x = 1:

  1. Substituting gives:

    27+32+16=2A+B(5)+C(0)27 + 32 + 16 = 2A + B(5) + C(0)

  2. Hence, we solve for AA:

    A=0A = 0

This confirms our values B=4B = 4 and A=0A = 0.

Step 2

HENCE, OR OTHERWISE, FIND THE SERIES EXPANSION OF f(x), IN ASCENDING POWERS OF x, UP TO AND INCLUDING THE TERM IN x^2. SIMPLIFY EACH TERM.

99%

104 rated

Answer

Start with the function:

f(x)=4(3x+2)+C(1x)f(x) = \frac{4}{(3x + 2)} + \frac{C}{(1 - x)}

Using the formula for geometric series expansion:

  1. For the first part:

    4(3x+2)=42(1+3x2)=2(13x2+(3x2)2...)\frac{4}{(3x + 2)} = \frac{4}{2(1 + \frac{3x}{2})} = 2(1 - \frac{3x}{2} + (\frac{3x}{2})^2 - ... )

  2. For the second part:

    C(1x)=Cn=0xn\frac{C}{(1 - x)} = C\sum_{n=0}^{\infty} x^n

Now, combine terms, simplifying up to x2x^2 gives:

=4(0)+x2(...)+...= 4(0) + x^2( ... ) + ...

Step 3

FIND THE PERCENTAGE ERROR MADE IN USING THE SERIES EXPANSION IN PART (b) TO ESTIMATE THE VALUE OF f(0.2).

96%

101 rated

Answer

To estimate f(0.2)f(0.2), we use the series expansion we derived:

  1. Calculate the actual value of f(0.2)f(0.2) using the original function:

    f(0.2)=4(3(0.2)+2)+C(10.2)f(0.2) = \frac{4}{(3(0.2) + 2)} + \frac{C}{(1 - 0.2)}

  2. For the estimate using series:

    Estimate=...Estimate = ...

  3. Calculate the percentage error:

    Percentage Error=ActualEstimateActual×100\text{Percentage Error} = \frac{\text{Actual} - \text{Estimate}}{\text{Actual}} \times 100

  4. Finally, present the answer to 2 significant figures.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;