Photo AI

8. (i) Solve, for $0 \\leq 0 < \\pi$, the equation $$ \sin 3\theta - \sqrt{3} \cos 3\theta = 0 $$ giving your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 9 - 2015 - Paper 2

Question icon

Question 9

8.-(i)-Solve,-for-$0-\\leq-0-<-\\pi$,-the-equation--$$-\sin-3\theta---\sqrt{3}-\cos-3\theta-=-0-$$-giving-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 9-2015-Paper 2.png

8. (i) Solve, for $0 \\leq 0 < \\pi$, the equation $$ \sin 3\theta - \sqrt{3} \cos 3\theta = 0 $$ giving your answers in terms of $\pi$. (3) (ii) Given that $$ 4\... show full transcript

Worked Solution & Example Answer:8. (i) Solve, for $0 \\leq 0 < \\pi$, the equation $$ \sin 3\theta - \sqrt{3} \cos 3\theta = 0 $$ giving your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 9 - 2015 - Paper 2

Step 1

Solve, for $0 \leq \theta < \pi$, the equation $$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$

96%

114 rated

Answer

To solve the equation, we rearrange it to:

sin3θ=3cos3θ\sin 3\theta = \sqrt{3} \cos 3\theta

Dividing both sides by cos3θ\cos 3\theta, we get:

tan3θ=3\tan 3\theta = \sqrt{3}

The general solution for this equation is:

3θ=π3+nπ(nZ)3\theta = \frac{\pi}{3} + n\pi \, (n \in \mathbb{Z})

Thus,

θ=π9+nπ3\theta = \frac{\pi}{9} + \frac{n\pi}{3}

Now we need to find values of θ\theta that lie within the interval 0θ<π0 \leq \theta < \pi:

  • For n=0n = 0: θ=π9\theta = \frac{\pi}{9}
  • For n=1n = 1: θ=π9+π3=4π9\theta = \frac{\pi}{9} + \frac{\pi}{3} = \frac{4\pi}{9}
  • For n=2n = 2: θ=π9+2π3=7π9\theta = \frac{\pi}{9} + \frac{2\pi}{3} = \frac{7\pi}{9}

Thus, the solutions are:

θ=π9,4π9,7π9\theta = \frac{\pi}{9}, \frac{4\pi}{9}, \frac{7\pi}{9}

Step 2

Given that $$4\sin^2 x + \cos x = 4 - k, \\ 0 \leq k < 3$$ a) find $\cos x$ in terms of $k$.

99%

104 rated

Answer

From the equation:

4sin2x+cosx=4k4\sin^2 x + \cos x = 4 - k

We can use the Pythagorean identity sin2x=1cos2x\sin^2 x = 1 - \cos^2 x:

4(1cos2x)+cosx=4k4(1 - \cos^2 x) + \cos x = 4 - k

This simplifies to:

44cos2x+cosx=4k4 - 4\cos^2 x + \cos x = 4 - k

Rearranging gives:

4cos2x+cosx+k=0-4\cos^2 x + \cos x + k = 0

Now, we can apply the quadratic formula:

cosx=b±b24ac2a\cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=4a = -4, b=1b = 1, and c=kc = k:

cosx=1±124(4)(k)2(4)=1±1+16k8=11+16k8\cos x = \frac{-1 \pm \sqrt{1^2 - 4(-4)(k)}}{2(-4)} = \frac{-1 \pm \sqrt{1 + 16k}}{-8} = \frac{1 \mp \sqrt{1 + 16k}}{8}

So:

cosx=11+16k8 or 1+1+16k8\cos x = \frac{1 - \sqrt{1 + 16k}}{8} \, \text{ or } \, \frac{1 + \sqrt{1 + 16k}}{8}

Step 3

Given that $k = 3$, find the values of $x$ in the range $0 \leq x < 360^\circ$.

96%

101 rated

Answer

Substituting k=3k = 3 into the equation:

4sin2x+cosx=43    4sin2x+cosx=14\sin^2 x + \cos x = 4 - 3 \implies 4\sin^2 x + \cos x = 1

Using sin2x=1cos2x\sin^2 x = 1 - \cos^2 x:

4(1cos2x)+cosx=1    44cos2x+cosx=14(1 - \cos^2 x) + \cos x = 1\implies 4 - 4\cos^2 x + \cos x = 1

This simplifies to:

4cos2x+cosx+3=0-4\cos^2 x + \cos x + 3 = 0

Rearranging gives:

4cos2xcosx3=04\cos^2 x - \cos x - 3 = 0

Again using the quadratic formula:

cosx=(1)±(1)24(4)(3)2(4)\cos x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(4)(-3)}}{2(4)}

This gives:

cosx=1±1+488=1±78\cos x = \frac{1 \pm \sqrt{1 + 48}}{8} = \frac{1 \pm 7}{8}

Thus:

  1. cosx=1x=0\cos x = 1\Rightarrow x = 0^\circ (discard since range starts at 0)
  2. cosx=34x=cos1(34)\cos x = -\frac{3}{4}\Rightarrow x = \cos^{-1}(-\frac{3}{4}) This corresponds to two angles in [0,360)[0, 360^\circ):
    • x1=180cos1(34)x_1 = 180^\circ - \cos^{-1}(-\frac{3}{4})
    • x2=360cos1(34)x_2 = 360^\circ - \cos^{-1}(-\frac{3}{4})

Calculating these values gives:

cos1(34)138.59\cos^{-1}(-\frac{3}{4}) \approx 138.59^\circ, therefore:

  • x1180138.5941.41x_1 \approx 180^\circ - 138.59^\circ \approx 41.41^\circ
  • x2360138.59221.41x_2 \approx 360^\circ - 138.59^\circ \approx 221.41^\circ

So, the values of xx are approximately:

x41.4,221.4x \approx 41.4^\circ, 221.4^\circ

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;