Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$ - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5
Question 6
Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$.
(b) Solve, for $0 < heta... show full transcript
Worked Solution & Example Answer:Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$ - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5
Step 1
Given that sin²θ + cos²θ ≡ 1, show that 1 + cot²θ ≡ cosec²θ
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To show that 1+cot2θ≡cosec2θ, we start from the Pythagorean identity:
We know that:
sin2θ+cos2θ=1
Dividing the entire equation by sin2θ, we get:
sin2θsin2θ+sin2θcos2θ=sin2θ1
This simplifies to:
1+cot2θ=cosec2θ.
Step 2
Solve, for 0 < θ < 180°, the equation 2 cot²θ - 9 cosecθ = 3
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve the equation 2cot2θ−9cosecθ−3=0, we proceed as follows:
Substitute cosecθ=sinθ1 and cotθ=sinθcosθ:
2(sin2θcos2θ)−9(sinθ1)=3
Rearranging gives:
2cosec2θ−9cosecθ−3=0
Let y=cosecθ, then:
2y2−9y−3=0
Solving this quadratic equation using the quadratic formula y=2a−b±b2−4ac:
y=2⋅29±92−4⋅2⋅(−3)
which simplifies to:
y=49±81+24=49±105
Calculating the two possible values for cosecθ gives:
cosecθ=y1 and y2
Converting back to θ:
For the positive root, we find:
θ≈11.5∘
For the negative root, we find:
θ≈168.5∘
Thus, the solutions to the equation are approximately:
θ=11.5∘,168.5∘.