Photo AI

Relative to a fixed origin O, the point A has position vector $(2i - j + 5k)$, the point B has position vector $(5i + 2j + 10k)$, and the point D has position vector $(-i + j + 4k)$ - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 8

Question icon

Question 1

Relative-to-a-fixed-origin-O,-the-point-A-has-position-vector-$(2i---j-+-5k)$,---the-point-B-has-position-vector-$(5i-+-2j-+-10k)$,---and-the-point-D-has-position-vector-$(-i-+-j-+-4k)$-Edexcel-A-Level Maths Pure-Question 1-2012-Paper 8.png

Relative to a fixed origin O, the point A has position vector $(2i - j + 5k)$, the point B has position vector $(5i + 2j + 10k)$, and the point D has position ve... show full transcript

Worked Solution & Example Answer:Relative to a fixed origin O, the point A has position vector $(2i - j + 5k)$, the point B has position vector $(5i + 2j + 10k)$, and the point D has position vector $(-i + j + 4k)$ - Edexcel - A-Level Maths Pure - Question 1 - 2012 - Paper 8

Step 1

Find the vector $\overrightarrow{AB}$

96%

114 rated

Answer

To find the vector AB\overrightarrow{AB}, we can use the position vectors of points A and B:

AB=BA=(5i+2j+10k)(2ij+5k)\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = (5i + 2j + 10k) - (2i - j + 5k)

This simplifies to:

AB=(52)i+(2(1))j+(105)k=3i+3j+5k\overrightarrow{AB} = (5-2)i + (2-(-1))j + (10-5)k = 3i + 3j + 5k

Step 2

Find a vector equation for the line l

99%

104 rated

Answer

The vector equation of the line l can be expressed using point A and the direction vector AB\overrightarrow{AB}:

r=A+tAB\mathbf{r} = \mathbf{A} + t \overrightarrow{AB}

Substituting for point A and AB\overrightarrow{AB}:

r=(2ij+5k)+t(3i+3j+5k)\mathbf{r} = (2i - j + 5k) + t(3i + 3j + 5k)

Thus, the vector equation is:

r=(2+3t)i+(1+3t)j+(5+5t)k\mathbf{r} = (2 + 3t)i + (-1 + 3t)j + (5 + 5t)k

Step 3

Show that the size of the angle BAD is 109°

96%

101 rated

Answer

To find the angle BAD, we first calculate AD\overrightarrow{AD}:

AD=DA=(i+j+4k)(2ij+5k)\overrightarrow{AD} = \overrightarrow{D} - \overrightarrow{A} = (-i + j + 4k) - (2i - j + 5k)

This gives us:

AD=(3i+2jk)\overrightarrow{AD} = (-3i + 2j - k)

Next, we use the cosine rule:

cosθ=ABADABAD\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{|\overrightarrow{AB}| |\overrightarrow{AD}|}

Calculating the dot product:

ABAD=(3)(3)+(3)(2)+(5)(1)=9+65=8\overrightarrow{AB} \cdot \overrightarrow{AD} = (3)(-3) + (3)(2) + (5)(-1) = -9 + 6 - 5 = -8

Finding the magnitudes:

AB=32+32+52=9+9+25=43|\overrightarrow{AB}| = \sqrt{3^2 + 3^2 + 5^2} = \sqrt{9 + 9 + 25} = \sqrt{43}

AD=(3)2+22+(1)2=9+4+1=14|\overrightarrow{AD}| = \sqrt{(-3)^2 + 2^2 + (-1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14}

Substituting these into the cosine rule:

cosθ=84314\cos \theta = \frac{-8}{\sqrt{43} \cdot \sqrt{14}}

Calculating:

From this, we find:\nθ109\theta \approx 109^{\circ}

Step 4

Find the position vector of C

98%

120 rated

Answer

To find the position vector of point C, we can use the relationship:

C=B+AD\overrightarrow{C} = \overrightarrow{B} + \overrightarrow{AD}

Substituting in our vectors:

C=(5i+2j+10k)+(3i+2jk)\overrightarrow{C} = (5i + 2j + 10k) + (-3i + 2j - k)

Simplifying this gives:

C=(53)i+(2+2)j+(101)k=2i+4j+9k\overrightarrow{C} = (5 - 3)i + (2 + 2)j + (10 - 1)k = 2i + 4j + 9k

Step 5

Find the area of the parallelogram ABCD, giving your answer to 3 significant figures

97%

117 rated

Answer

The area of the parallelogram can be calculated using the formula:

Area=AB×AD\text{Area} = |\overrightarrow{AB} \times \overrightarrow{AD}|

Calculating the cross product:

AB=(3,3,5)\overrightarrow{AB} = (3, 3, 5) AD=(3,2,1)\overrightarrow{AD} = (-3, 2, -1)

The determinant of the matrix formed gives:

i^j^k^335321\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 3 & 5 \\ -3 & 2 & -1 \end{vmatrix}

Calculating leads to:

Area=23.2\text{Area} = 23.2

Step 6

Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures

97%

121 rated

Answer

To find the shortest distance from point D to line l, we use:

d=ADnnd = \frac{|\overrightarrow{AD} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}

Where n\overrightarrow{n} is a vector parallel to the line, calculated as:

n=AB\overrightarrow{n} = \overrightarrow{AB}

After substituting the values:

d=sine(109)14d = \frac{sine(109^{\circ})}{\sqrt{14}}

Calculating yields:

d3.54d \approx 3.54

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;