Start with the equation to show:
(x−3)2+y2=4.
Substituting the parametric equations:
-
Substitute for x:
x−3=t2+1t2+5−3=t2+1t2+5−3(t2+1)=t2+1−2t2+2=t2+12(1−t2).
-
Thus,
(x−3)2=(t2+12(1−t2))2=(t2+1)24(1−t2)2.
Next, substitute for y:
y=t2+14
Then,
y2=(t2+14)2=(t2+1)216.
Now combine the results:
(t2+1)24(1−t2)2+(t2+1)216=(t2+1)24((1−t2)2+4).
Simplifying produces:
(t2+1)24(1−2t2+t4+4)=(t2+1)24(t4−2t2+5).
We want to show that this equals 4:
(t2+1)24(t4−2t2+5)=4,
which simplifies back to the original equation.