Photo AI

A curve C has parametric equations $$x = \frac{t^2 + 5}{t^2 + 1}$$ $$y = \frac{4}{t^2 + 1}$$ $$t \in \mathbb{R}$$ Show that all points on C satisfy $$(x - 3)^2 + y^2 = 4$$ - Edexcel - A-Level Maths Pure - Question 1 - 2021 - Paper 2

Question icon

Question 1

A-curve-C-has-parametric-equations--$$x-=-\frac{t^2-+-5}{t^2-+-1}$$---$$y-=-\frac{4}{t^2-+-1}$$---$$t-\in-\mathbb{R}$$----Show-that-all-points-on-C-satisfy---$$(x---3)^2-+-y^2-=-4$$-Edexcel-A-Level Maths Pure-Question 1-2021-Paper 2.png

A curve C has parametric equations $$x = \frac{t^2 + 5}{t^2 + 1}$$ $$y = \frac{4}{t^2 + 1}$$ $$t \in \mathbb{R}$$ Show that all points on C satisfy $$(x - ... show full transcript

Worked Solution & Example Answer:A curve C has parametric equations $$x = \frac{t^2 + 5}{t^2 + 1}$$ $$y = \frac{4}{t^2 + 1}$$ $$t \in \mathbb{R}$$ Show that all points on C satisfy $$(x - 3)^2 + y^2 = 4$$ - Edexcel - A-Level Maths Pure - Question 1 - 2021 - Paper 2

Step 1

Substituting parametric equations into the Cartesian equation

96%

114 rated

Answer

Start with the equation to show: (x3)2+y2=4(x - 3)^2 + y^2 = 4.

Substituting the parametric equations:

  1. Substitute for xx: x3=t2+5t2+13=t2+53(t2+1)t2+1=2t2+2t2+1=2(1t2)t2+1x - 3 = \frac{t^2 + 5}{t^2 + 1} - 3 = \frac{t^2 + 5 - 3(t^2 + 1)}{t^2 + 1} = \frac{-2t^2 + 2}{t^2 + 1} = \frac{2(1 - t^2)}{t^2 + 1}.

  2. Thus, (x3)2=(2(1t2)t2+1)2=4(1t2)2(t2+1)2(x - 3)^2 = \left( \frac{2(1 - t^2)}{t^2 + 1} \right)^2 = \frac{4(1 - t^2)^2}{(t^2 + 1)^2}.

Next, substitute for yy: y=4t2+1y = \frac{4}{t^2 + 1}

Then, y2=(4t2+1)2=16(t2+1)2y^2 = \left( \frac{4}{t^2 + 1} \right)^2 = \frac{16}{(t^2 + 1)^2}.

Now combine the results:
4(1t2)2(t2+1)2+16(t2+1)2=4((1t2)2+4)(t2+1)2\frac{4(1 - t^2)^2}{(t^2 + 1)^2} + \frac{16}{(t^2 + 1)^2} = \frac{4((1 - t^2)^2 + 4)}{(t^2 + 1)^2}.

Simplifying produces: 4(12t2+t4+4)(t2+1)2=4(t42t2+5)(t2+1)2\frac{4(1 - 2t^2 + t^4 + 4)}{(t^2 + 1)^2} = \frac{4(t^4 - 2t^2 + 5)}{(t^2 + 1)^2}.

We want to show that this equals 4: 4(t42t2+5)(t2+1)2=4\frac{4(t^4 - 2t^2 + 5)}{(t^2 + 1)^2} = 4, which simplifies back to the original equation.

Step 2

Conclusion

99%

104 rated

Answer

Since both sides equal, we have shown that all points on C satisfy: (x3)2+y2=4(x - 3)^2 + y^2 = 4.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;