Photo AI

Given that $y = 2$ when $x = -\frac{\pi}{8}$ solve the differential equation \[\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x}\] $$-\frac{1}{2} < x < \frac{1}{2}$$ giving your answer in the form $y = f(x)$. - Edexcel - A-Level Maths Pure - Question 7 - 2018 - Paper 9

Question icon

Question 7

Given-that-$y-=-2$-when-$x-=--\frac{\pi}{8}$-solve-the-differential-equation-\[\frac{dy}{dx}-=-\frac{y^2}{3\cos^2-2x}\]-$$-\frac{1}{2}-<-x-<-\frac{1}{2}$$-giving-your-answer-in-the-form-$y-=-f(x)$.-Edexcel-A-Level Maths Pure-Question 7-2018-Paper 9.png

Given that $y = 2$ when $x = -\frac{\pi}{8}$ solve the differential equation \[\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x}\] $$-\frac{1}{2} < x < \frac{1}{2}$$ giving you... show full transcript

Worked Solution & Example Answer:Given that $y = 2$ when $x = -\frac{\pi}{8}$ solve the differential equation \[\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x}\] $$-\frac{1}{2} < x < \frac{1}{2}$$ giving your answer in the form $y = f(x)$. - Edexcel - A-Level Maths Pure - Question 7 - 2018 - Paper 9

Step 1

Separate Variables

96%

114 rated

Answer

Starting with the differential equation:

dydx=y23cos2(2x)\frac{dy}{dx} = \frac{y^2}{3\cos^2(2x)}

we separate the variables to denote:

dyy2=13cos2(2x)dx\frac{dy}{y^2} = \frac{1}{3\cos^2(2x)}dx

Step 2

Integrate Both Sides

99%

104 rated

Answer

Next, we integrate both sides:

dyy2=13cos2(2x)dx\int \frac{dy}{y^2} = \int \frac{1}{3\cos^2(2x)} dx

The left side integrates to:

1y-\frac{1}{y}

and for the right side, we utilize the identity sec2(a)=1cos2(a)\sec^2(a) = \frac{1}{\cos^2(a)}:

13sec2(2x)dx=1312tan(2x)+C=16tan(2x)+C\int \frac{1}{3}\sec^2(2x) dx = \frac{1}{3} \cdot \frac{1}{2} \tan(2x) + C = \frac{1}{6} \tan(2x) + C

Step 3

Combine the Results

96%

101 rated

Answer

Thus, we have:

1y=16tan(2x)+C-\frac{1}{y} = \frac{1}{6} \tan(2x) + C or rearranging gives:

y=116tan(2x)+Cy = -\frac{1}{\frac{1}{6} \tan(2x) + C}

Step 4

Apply Initial Condition

98%

120 rated

Answer

Now, we apply the initial condition y=2y = 2 when x=π8x = -\frac{\pi}{8}:

Substituting, we find:

2=116tan(2(π8))+C2 = -\frac{1}{\frac{1}{6} \tan\left(2(-\frac{\pi}{8})\right) + C}

Calculating tantan:

tan(π4)=1    2=116C\tan(-\frac{\pi}{4}) = -1 \implies 2 = -\frac{1}{-\frac{1}{6} - C}

Solving for CC leads to C=12C = -\frac{1}{2}.

Step 5

Final Expression for y

97%

117 rated

Answer

Replacing CC back, the solution is:

y=116tan(2x)12y = -\frac{1}{\frac{1}{6} \tan(2x) - \frac{1}{2}} which simplifies to:

y=63tan(2x)1y = \frac{6}{3 \tan(2x) - 1} This gives us our final answer in the form y=f(x)y = f(x).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;