Photo AI

4. (a) Differentiate with respect to x (i) $x^2 e^{x^2 + 2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 5

Question icon

Question 6

4.-(a)-Differentiate-with-respect-to-x--(i)-$x^2-e^{x^2-+-2}$-Edexcel-A-Level Maths Pure-Question 6-2006-Paper 5.png

4. (a) Differentiate with respect to x (i) $x^2 e^{x^2 + 2}$. (ii) $\frac{\cos(2x)}{3x}$. (b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x.

Worked Solution & Example Answer:4. (a) Differentiate with respect to x (i) $x^2 e^{x^2 + 2}$ - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 5

Step 1

(i) Differentiate with respect to x

96%

114 rated

Answer

To differentiate the function f(x)=x2ex2+2f(x) = x^2 e^{x^2 + 2}, we use the product rule, which states that if u=x2u = x^2 and v=ex2+2v = e^{x^2 + 2}, then:

dydx=uv+uv\frac{dy}{dx} = u'v + uv'

Calculating each part:

  • u=2xu' = 2x
  • v=ex2+2(2x)v' = e^{x^2 + 2} (2x) (using chain rule)

Thus, we can write:

dydx=2xex2+2+x2(2xex2+2)\frac{dy}{dx} = 2x e^{x^2 + 2} + x^2 (2x e^{x^2 + 2})

Combining the terms:

dydx=ex2+2(2x+2x3)=2xex2+2(1+x2)\frac{dy}{dx} = e^{x^2 + 2} (2x + 2x^3) = 2xe^{x^2 + 2} (1 + x^2)

Step 2

(ii) Differentiate with respect to x

99%

104 rated

Answer

To differentiate g(x)=cos(2x)3xg(x) = \frac{\cos(2x)}{3x}, we apply the quotient rule:

dydx=vuuvv2\frac{dy}{dx} = \frac{v u' - u v'}{v^2}

Where u=cos(2x)u = \cos(2x) and v=3xv = 3x. Calculating:

  • u=2sin(2x)u' = -2 \sin(2x) (using chain rule)
  • v=3v' = 3

Now substituting into the quotient rule:

dydx=(3x)(2sin(2x))(cos(2x))(3)(3x)2\frac{dy}{dx} = \frac{(3x)(-2 \sin(2x)) - (\cos(2x))(3)}{(3x)^2}

Simplifying gives us:

dydx=6xsin(2x)3cos(2x)9x2=2sin(2x)cos(2x)x3x\frac{dy}{dx} = \frac{-6x \sin(2x) - 3 \cos(2x)}{9x^2} = \frac{-2 \sin(2x) - \frac{\cos(2x)}{x}}{3x}

Step 3

Given that x = 4 sin(2y + 6), find dy/dx in terms of x

96%

101 rated

Answer

From the equation x=4sin(2y+6)x = 4 \sin(2y + 6), we differentiate both sides with respect to x:

1=4cos(2y+6)2dydx1 = 4 \cos(2y + 6) \cdot 2\frac{dy}{dx}

Thus:

dydx=18cos(2y+6)\frac{dy}{dx} = \frac{1}{8 \cos(2y + 6)}

We need to express this in terms of xx. From x=4sin(2y+6)x = 4 \sin(2y + 6), we rearrange:

sin(2y+6)=x4\sin(2y + 6) = \frac{x}{4}

Using the Pythagorean identity:

cos2(2y+6)=1sin2(2y+6)=1(x4)2\cos^2(2y + 6) = 1 - \sin^2(2y + 6) = 1 - \left(\frac{x}{4}\right)^2

Thus:

cos(2y+6)=1x216\cos(2y + 6) = \sqrt{1 - \frac{x^2}{16}}

Therefore, substituting into our derivative gives:

dydx=181x216\frac{dy}{dx} = \frac{1}{8 \sqrt{1 - \frac{x^2}{16}}}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;