Photo AI

5. (i) Differentiate with respect to x (a) $y = x^2 ext{ ln } 2x$ (b) $y = (x + ext{ sin } 2x)^3$ Given that $x = ext{ cot } y$, (ii) show that $ rac{dy}{dx} = rac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Question icon

Question 25

5.-(i)-Differentiate-with-respect-to-x--(a)--$y-=-x^2--ext{-ln-}-2x$--(b)--$y-=-(x-+--ext{-sin-}-2x)^3$----Given-that-$x-=--ext{-cot-}-y$,---(ii)-show-that-$-rac{dy}{dx}-=--rac{-1}{1+x^2}$-Edexcel-A-Level Maths Pure-Question 25-2013-Paper 1.png

5. (i) Differentiate with respect to x (a) $y = x^2 ext{ ln } 2x$ (b) $y = (x + ext{ sin } 2x)^3$ Given that $x = ext{ cot } y$, (ii) show that $ rac{dy}... show full transcript

Worked Solution & Example Answer:5. (i) Differentiate with respect to x (a) $y = x^2 ext{ ln } 2x$ (b) $y = (x + ext{ sin } 2x)^3$ Given that $x = ext{ cot } y$, (ii) show that $ rac{dy}{dx} = rac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Step 1

(a) Differentiate $y = x^2 ext{ ln } 2x$

96%

114 rated

Answer

To differentiate y=x2extln2xy = x^2 ext{ ln } 2x, we will apply the product rule.

Let:

  • u=x2u = x^2
  • v=extln2xv = ext{ ln } 2x

First, we differentiate uu and vv:

  • dudx=2x\frac{du}{dx} = 2x
  • dvdx=12x2=1x\frac{dv}{dx} = \frac{1}{2x} * 2 = \frac{1}{x}

Now apply the product rule: dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} Substituting the values of uu, vv, and their derivatives: dydx=x2(1x)+ ln 2x2x\frac{dy}{dx} = x^2 \left(\frac{1}{x}\right) + \text{ ln } 2x \cdot 2x
This simplifies to: dydx=x+2x ln 2x\frac{dy}{dx} = x + 2x \text{ ln } 2x

Step 2

(b) Differentiate $y = (x + ext{ sin } 2x)^3$

99%

104 rated

Answer

To differentiate y=(x+extsin2x)3y = (x + ext{ sin } 2x)^3, we use the chain rule.

Let:

  • u=x+extsin2xu = x + ext{ sin } 2x
    Then: y=u3y = u^3

Now, applying the chain rule gives: dydx=3u2dudx\frac{dy}{dx} = 3u^2 \cdot \frac{du}{dx}

Next, we find dudx\frac{du}{dx}:

  • The derivative of uu is: dudx=1+2cos(2x)\frac{du}{dx} = 1 + 2\cos(2x)

Substituting back, we have: dydx=3(x+extsin2x)2(1+2cos(2x))\frac{dy}{dx} = 3(x + ext{ sin } 2x)^2 \cdot (1 + 2\cos(2x))

Step 3

(ii) Show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$

96%

101 rated

Answer

Given x= cot yx = \text{ cot } y, we need to find dydx\frac{dy}{dx}. Using implicit differentiation:

  1. We know: dxdy= csc2y\frac{dx}{dy} = -\text{ csc}^2 y

  2. We then express: dydx=1dxdy= csc2y\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = -\text{ csc}^2 y

  3. Since  csc2y=1+ cot2y\text{ csc}^2 y = 1 + \text{ cot}^2 y, we can substitute: dydx=(1+x2)\frac{dy}{dx} = -\left(1 + x^2\right)

Thus, we arrive at: dydx=11+x2\frac{dy}{dx} = \frac{-1}{1+x^2}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;