Photo AI

6. (i) Find \[ \int x e^{x} \, dx \] (ii) Find \[ \int \frac{8}{(2x - 1)^{3}} \, dx, \quad x > \frac{1}{2} \] (iii) Given that \[ y = \frac{\pi}{6} \text{ at } x = 0, \] solve the differential equation \[ \frac{dy}{dx} = e^{x} \csc 2y \cos 2y \] - Edexcel - A-Level Maths Pure - Question 5 - 2014 - Paper 7

Question icon

Question 5

6.-(i)-Find--\[-\int-x-e^{x}-\,-dx-\]---(ii)-Find--\[-\int-\frac{8}{(2x---1)^{3}}-\,-dx,-\quad-x->-\frac{1}{2}-\]---(iii)-Given-that--\[-y-=-\frac{\pi}{6}-\text{-at-}-x-=-0,-\]--solve-the-differential-equation--\[-\frac{dy}{dx}-=-e^{x}-\csc-2y-\cos-2y-\]-Edexcel-A-Level Maths Pure-Question 5-2014-Paper 7.png

6. (i) Find \[ \int x e^{x} \, dx \] (ii) Find \[ \int \frac{8}{(2x - 1)^{3}} \, dx, \quad x > \frac{1}{2} \] (iii) Given that \[ y = \frac{\pi}{6} \text{ at ... show full transcript

Worked Solution & Example Answer:6. (i) Find \[ \int x e^{x} \, dx \] (ii) Find \[ \int \frac{8}{(2x - 1)^{3}} \, dx, \quad x > \frac{1}{2} \] (iii) Given that \[ y = \frac{\pi}{6} \text{ at } x = 0, \] solve the differential equation \[ \frac{dy}{dx} = e^{x} \csc 2y \cos 2y \] - Edexcel - A-Level Maths Pure - Question 5 - 2014 - Paper 7

Step 1

Find \[ \int x e^{x} \, dx \]

96%

114 rated

Answer

To solve [ \int x e^{x} , dx ], we will use integration by parts. Let:
[ u = x \quad \Rightarrow \quad du = dx ]
[ dv = e^{x} , dx \quad \Rightarrow \quad v = e^{x} ]
Applying the integration by parts formula, [ \int u , dv = uv - \int v , du ]:
[ \int x e^{x} , dx = x e^{x} - \int e^{x} , dx ]
[ = x e^{x} - e^{x} + C ]
Thus, the final answer is [ e^{x} (x - 1) + C ].

Step 2

Find \[ \int \frac{8}{(2x - 1)^{3}} \, dx, \quad x > \frac{1}{2} \]

99%

104 rated

Answer

To solve this integral, we can use a substitution method. Let [ u = 2x - 1 ] such that [ du = 2 , dx ] or [ dx = \frac{du}{2} ].
Replacing in the integral gives:
[ \int \frac{8}{u^{3}} \cdot \frac{du}{2} = 4 \int u^{-3} , du ].
Integrating leads to:
[ 4 \cdot \left( -\frac{1}{2u^{2}} \right) + C = -\frac{2}{u^{2}} + C ]
Substituting back for [ u ]:
[ -\frac{2}{(2x - 1)^{2}} + C ].

Step 3

Given that \[ y = \frac{\pi}{6} \text{ at } x = 0, \] solve the differential equation \[ \frac{dy}{dx} = e^{x} \csc 2y \cos 2y \]

96%

101 rated

Answer

To solve this differential equation, we start by separating variables.
Rearranging gives:
[ \frac{dy}{\csc 2y \cos 2y} = e^{x} , dx ]
Recall that [ \csc 2y \cos 2y = \frac{1}{\sin 2y} ]. Thus,
[ \sin 2y , dy = e^{x} , dx ]
Now, we integrate both sides:
[ -\cos 2y = e^{x} + C ].
Using the initial condition [ y = \frac{\pi}{6} \text{ when } x = 0 ]:
[ -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} = e^{0} + C \Rightarrow C = -\frac{3}{2} ].
Thus, the solution becomes:
[ \cos 2y = -e^{x} - \frac{3}{2} ]
This solution represents the relationship between [ x ] and [ y ] in the defined equation.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths Pure topics to explore

1.1 Proof

Maths Pure - AQA

1.2 Proof by Contradiction

Maths Pure - AQA

2.1 Laws of Indices & Surds

Maths Pure - AQA

2.2 Quadratics

Maths Pure - AQA

2.3 Simultaneous Equations

Maths Pure - AQA

2.4 Inequalities

Maths Pure - AQA

2.5 Polynomials

Maths Pure - AQA

2.6 Rational Expressions

Maths Pure - AQA

2.7 Graphs of Functions

Maths Pure - AQA

2.8 Functions

Maths Pure - AQA

2.9 Transformations of Functions

Maths Pure - AQA

2.10 Combinations of Transformations

Maths Pure - AQA

2.11 Partial Fractions

Maths Pure - AQA

2.12 Modelling with Functions

Maths Pure - AQA

2.13 Further Modelling with Functions

Maths Pure - AQA

3.1 Equation of a Straight Line

Maths Pure - AQA

3.2 Circles

Maths Pure - AQA

4.1 Binomial Expansion

Maths Pure - AQA

4.2 General Binomial Expansion

Maths Pure - AQA

4.3 Arithmetic Sequences & Series

Maths Pure - AQA

4.4 Geometric Sequences & Series

Maths Pure - AQA

4.5 Sequences & Series

Maths Pure - AQA

4.6 Modelling with Sequences & Series

Maths Pure - AQA

5.1 Basic Trigonometry

Maths Pure - AQA

5.2 Trigonometric Functions

Maths Pure - AQA

5.3 Trigonometric Equations

Maths Pure - AQA

5.4 Radian Measure

Maths Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths Pure - AQA

5.6 Compound & Double Angle Formulae

Maths Pure - AQA

5.7 Further Trigonometric Equations

Maths Pure - AQA

5.8 Trigonometric Proof

Maths Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths Pure - AQA

6.1 Exponential & Logarithms

Maths Pure - AQA

6.2 Laws of Logarithms

Maths Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths Pure - AQA

7.1 Differentiation

Maths Pure - AQA

7.2 Applications of Differentiation

Maths Pure - AQA

7.3 Further Differentiation

Maths Pure - AQA

7.4 Further Applications of Differentiation

Maths Pure - AQA

7.5 Implicit Differentiation

Maths Pure - AQA

8.1 Integration

Maths Pure - AQA

8.2 Further Integration

Maths Pure - AQA

8.3 Differential Equations

Maths Pure - AQA

9.1 Parametric Equations

Maths Pure - AQA

10.1 Solving Equations

Maths Pure - AQA

10.2 Modelling involving Numerical Methods

Maths Pure - AQA

11.1 Vectors in 2 Dimensions

Maths Pure - AQA

11.2 Vectors in 3 Dimensions

Maths Pure - AQA

;