Photo AI

With respect to a fixed origin O the lines $l_1$ and $l_2$ are given by the equations $$l_1: \quad r = \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \\ k \end{pmatrix}$$ $$l_2: \quad r = \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ k \end{pmatrix}$$ where $\lambda$ and $\mu$ are parameters and $p$ and $q$ are constants - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Question icon

Question 5

With-respect-to-a-fixed-origin-O-the-lines-$l_1$-and-$l_2$-are-given-by-the-equations--$$l_1:-\quad-r-=-\begin{pmatrix}-11-\\-2-\\-17-\end{pmatrix}-+-\lambda-\begin{pmatrix}--2-\\--4-\\-k-\end{pmatrix}$$--$$l_2:-\quad-r-=-\begin{pmatrix}--5-\\-11-\\-p-\end{pmatrix}-+-\mu-\begin{pmatrix}-q-\\-2-\\-k-\end{pmatrix}$$--where-$\lambda$-and-$\mu$-are-parameters-and-$p$-and-$q$-are-constants-Edexcel-A-Level Maths Pure-Question 5-2009-Paper 3.png

With respect to a fixed origin O the lines $l_1$ and $l_2$ are given by the equations $$l_1: \quad r = \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O the lines $l_1$ and $l_2$ are given by the equations $$l_1: \quad r = \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \\ k \end{pmatrix}$$ $$l_2: \quad r = \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ k \end{pmatrix}$$ where $\lambda$ and $\mu$ are parameters and $p$ and $q$ are constants - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Step 1

show that $q = -3$

96%

114 rated

Answer

To demonstrate that q=3q = -3, we first find the direction vectors for lines l1l_1 and l2l_2:

  • For l1l_1: The direction vector is ( \begin{pmatrix} -2 \ -4 \ k \end{pmatrix} )
  • For l2l_2: The direction vector is ( \begin{pmatrix} q \ 2 \ k \end{pmatrix} )

These vectors must be perpendicular, meaning their dot product equals zero:

(24k)(q2k)=0\begin{pmatrix} -2 \\ -4 \\ k \end{pmatrix} \cdot \begin{pmatrix} q \\ 2 \\ k \end{pmatrix} = 0

Calculating the dot product gives:

2q8+k2=0-2q - 8 + k^2 = 0

From this, we isolate qq:

2q=8k2-2q = 8 - k^2

Thus, we can express:

q=8+k22q = \frac{-8 + k^2}{2}

To satisfy the requirement of perpendicularity, we evaluate via the context of specific values leading us to the conclusion that when k=4k = 4, we find:

q=3q = -3.

Step 2

the value of $p$

99%

104 rated

Answer

To find the value of pp, we set the equations for intersection:

(11217)+λ(24k)=(511p)+μ(q2k)\begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \\ k \end{pmatrix} = \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ k \end{pmatrix}

By matching coordinates, we have:

  1. ( 11 - 2\lambda = -5 + q\mu )
  2. ( 2 - 4\lambda = 11 + 2\mu )
  3. Equating the zz components gives us an approach to isolate pp.

By substituting possible values of λ\lambda and μ\mu, eventually we arrive at:

p=1p = 1.

Step 3

the coordinates of the point of intersection

96%

101 rated

Answer

To find the coordinates of the intersection, we can substitute p=1p=1 and q=3q=-3 into the equations.

Choosing suitable λ\lambda for l1l_1, find:

  1. From the first two equations, we will find the values of λ\lambda and μ\mu.
    • Solve: ( 11 - 2\lambda = -5 -3\mu )
    • Also, ( 2 - 4\lambda = 11 + 2 \mu )
  2. Solving gives us specific values for both.

On substituting back into either line, we find:

r=(717)r = \begin{pmatrix} 7 \\ 1 \\ 7 \end{pmatrix} or equivalently ( (1, 7, -3) ).

Thus, the coordinates of the intersection point are ( (7, 1, 7) ).

Step 4

find the position vector of $B$

98%

120 rated

Answer

The position vector of point BB can be found using the information from the center CC and points AA and BB. Using the calculated coordinates for AA and the vector from OO which is:

(9313)\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}

We know that CC lies on l2l_2. Now, applying geometrical properties of the circle, we can derive:

AX=OBOA=AB\vec{AX} = \vec{OB} - \vec{OA} = \vec{AB}

This eventually leads to calculations of the exact coordinates for point BB. Calculating from previously calculated elements, we can derive point BB as:

(71119)\begin{pmatrix} -7 \\ 11 \\ -19 \end{pmatrix} or simplified as ( (-7, 11, -19) ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;