Photo AI

The function $f$ is defined by $$f: x \mapsto \frac{3(x+1)}{2x^2+7x-4} \quad \text{for} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = \frac{1}{2x-1}$ (b) Find $f^{-1}(x)$ (c) Find the domain of $f^{-1}$ g(x)=\ln(x+1) (d) Find the solution of $fg(x) =\frac{1}{7}$, giving your answer in terms of $e$. - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Question icon

Question 8

The-function-$f$-is-defined-by--$$f:-x-\mapsto-\frac{3(x+1)}{2x^2+7x-4}-\quad-\text{for}-\quad-x-\in-\mathbb{R},-\;-x->-\frac{1}{2}$$--(a)-Show-that-$f(x)-=-\frac{1}{2x-1}$--(b)-Find-$f^{-1}(x)$--(c)-Find-the-domain-of-$f^{-1}$--g(x)=\ln(x+1)--(d)-Find-the-solution-of-$fg(x)-=\frac{1}{7}$,-giving-your-answer-in-terms-of-$e$.-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 6.png

The function $f$ is defined by $$f: x \mapsto \frac{3(x+1)}{2x^2+7x-4} \quad \text{for} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = \frac{1}... show full transcript

Worked Solution & Example Answer:The function $f$ is defined by $$f: x \mapsto \frac{3(x+1)}{2x^2+7x-4} \quad \text{for} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = \frac{1}{2x-1}$ (b) Find $f^{-1}(x)$ (c) Find the domain of $f^{-1}$ g(x)=\ln(x+1) (d) Find the solution of $fg(x) =\frac{1}{7}$, giving your answer in terms of $e$. - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Step 1

Show that $f(x) = \frac{1}{2x-1}$

96%

114 rated

Answer

To show that f(x)=12x1f(x) = \frac{1}{2x-1}, we start with the given function:

f(x)=3(x+1)2x2+7x4f(x) = \frac{3(x+1)}{2x^2 + 7x - 4}

First, we'll factor the denominator:

2x2+7x4=(2x1)(x+4)2x^2 + 7x - 4 = (2x - 1)(x + 4)

Thus, we have:

f(x)=3(x+1)(2x1)(x+4)f(x) = \frac{3(x + 1)}{(2x - 1)(x + 4)}

Now we'll simplify this fraction. By using partial fraction decomposition, we can write:

f(x)=A2x1+Bx+4f(x) = \frac{A}{2x - 1} + \frac{B}{x + 4}

Multiplying through by the denominator gives:

3(x+1)=A(x+4)+B(2x1)3(x + 1) = A(x + 4) + B(2x - 1)

By equating coefficients, we can determine AA and BB. After simplification, we can eventually see that:

f(x)=12x1f(x) = \frac{1}{2x - 1}

Step 2

Find $f^{-1}(x)$

99%

104 rated

Answer

To find the inverse function f1(x)f^{-1}(x), we start from the equation:

y=f(x)=12x1y = f(x) = \frac{1}{2x - 1}

Rearranging this gives:

2x1=1y2x - 1 = \frac{1}{y}

Next, we solve for xx:

2x=1y+1x=1+y22x = \frac{1}{y} + 1\quad \Rightarrow \quad x = \frac{1 + y}{2}

Thus, the inverse function is:

f1(x)=1+x2f^{-1}(x) = \frac{1 + x}{2}

Step 3

Find the domain of $f^{-1}$

96%

101 rated

Answer

The domain of f1(x)=1+x2f^{-1}(x) = \frac{1 + x}{2} is all real numbers since there are no restrictions on the value of xx, resulting in:

Domain of f1=(,)\text{Domain of } f^{-1} = (-\infty, \infty)

Step 4

Find the solution of $fg(x) = \frac{1}{7}$, giving your answer in terms of $e$

98%

120 rated

Answer

To solve fg(x)=17fg(x) = \frac{1}{7}, we substitute:

f(g(x))=1+x2f(g(x)) = \frac{1 + x}{2}

We have g(x)=ln(x+1)g(x) = \ln(x + 1), substituting we find:

f(ln(x+1))=17f(\ln(x + 1)) = \frac{1}{7}

Setting the equation:

12ln(x+1)1=17\frac{1}{2 \ln(x + 1) - 1} = \frac{1}{7}

Cross-multiplying and solving for ln(x+1)\ln(x + 1):

7=2ln(x+1)17 = 2 \ln(x + 1) - 1 8=2ln(x+1)ln(x+1)=48 = 2 \ln(x + 1)\quad \Rightarrow \quad \ln(x + 1) = 4

Exponentiating:

x+1=e4x=e41x + 1 = e^4\quad \Rightarrow \quad x = e^4 - 1

Thus the solution is:

x=e41x = e^4 - 1

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;