Photo AI

7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$ (b) On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ.$$ (c) Solve, for $$0^\circ < \theta < 360^\circ$$, the equation $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\cos \theta}{\sin \theta} = 3,$$ giving your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 5

Question icon

Question 1

7.-(a)-Prove-that----$$\frac{\sin-\theta-\cdot-\cos-\theta}{\cos^2-\theta}-+-\frac{\sin^2-\theta}{\sin-\theta}-=-2-\csc-2\theta,-\quad-\theta-\neq-90^\circ.$$---(b)-On-the-axes-on-page-20,-sketch-the-graph-of---$$y-=-2-\csc-2\theta$$-for-$$0^\circ-<-\theta-<-360^\circ.$$---(c)-Solve,-for-$$0^\circ-<-\theta-<-360^\circ$$,-the-equation----$$\frac{\sin-\theta-\cdot-\cos-\theta}{\cos^2-\theta}-\cdot-\frac{\cos-\theta}{\sin-\theta}-=-3,$$---giving-your-answers-to-1-decimal-place.-Edexcel-A-Level Maths Pure-Question 1-2007-Paper 5.png

7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$ (b) ... show full transcript

Worked Solution & Example Answer:7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$ (b) On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ.$$ (c) Solve, for $$0^\circ < \theta < 360^\circ$$, the equation $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\cos \theta}{\sin \theta} = 3,$$ giving your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 5

Step 1

Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\sin \theta} = 2 \csc 2\theta$$

96%

114 rated

Answer

To prove the equation, start by rewriting the left-hand side:

  1. Combine terms by finding a common denominator: sinθcosθ+sin2θcos2θ\frac{\sin \theta \cdot \cos \theta + \sin^2 \theta}{\cos^2 \theta}

  2. Factor out sinθ\sin \theta from the numerator: sinθ(cosθ+sinθ)cos2θ\frac{\sin \theta (\cos \theta + \sin \theta)}{\cos^2 \theta}

  3. Using the double angle identity, recall that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta. Thus, we can express this as: 1sin2θ\frac{1}{\sin 2\theta}

  4. Conclude that this equals the right-hand side: 2csc2θ2 \csc 2\theta, thereby proving the equation.

Step 2

On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ$$

99%

104 rated

Answer

To sketch the graph:

  1. Identify the asymptotes where 2θ=nπ2\theta = n\pi for nZn \in \mathbb{Z}, which gives asymptotes at: θ=0,90,180,270,360\theta = 0^\circ, 90^\circ, 180^\circ, 270^\circ, 360^\circ.

  2. Mark the points where the function attains its maximum and minimum, which occur at θ=45,135,225,315\theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ resulting in values of 2 and -2.

  3. Plot the curve, noting the general shape of the cosecant function - it will have branches extending infinitely in both positive and negative directions.

Step 3

Solve, for $$0^\circ < \theta < 360^\circ$$, the equation $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\cos \theta}{\sin \theta} = 3$$

96%

101 rated

Answer

To solve the equation:

  1. Rearrange and simplify the equation: 2csc2θ=32\csc 2\theta = 3.

  2. Therefore, csc2θ=32\csc 2\theta = \frac{3}{2} implies: sin2θ=23\sin 2\theta = \frac{2}{3}.

  3. Find the general solution for 2θ2\theta: 2θ=sin1(23),180sin1(23)2\theta = \sin^{-1}\left(\frac{2}{3}\right), 180^\circ - \sin^{-1}\left(\frac{2}{3}\right) which gives: 2θ41.81,138.19,401.81,498.192\theta \approx 41.81^\circ, 138.19^\circ, 401.81^\circ, 498.19^\circ.

  4. Hence, for θ\theta, divide each result by 2: θ20.90,69.10,200.90,249.10.\theta \approx 20.90^\circ, 69.10^\circ, 200.90^\circ, 249.10^\circ.
    Format the answers to 1 decimal place as:

    • 20.920.9^\circ, 69.169.1^\circ, 200.9200.9^\circ, 249.1249.1^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;