Photo AI

9. (a) Prove that $$\sin 2x - \tan x = \tan x \cos 2x,$$ $$x \neq (2n + 1)90^\circ, \ n \in \mathbb{Z}$$ (b) Given that $$x \neq 90^\circ \text{ and } x \neq 270^\circ,$$ solve, for $$0 \leq x < 360^\circ,$$ $$\sin 2x - \tan x = 3 \tan x \sin x.$$ Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 9 - 2017 - Paper 4

Question icon

Question 9

9.-(a)-Prove-that--$$\sin-2x---\tan-x-=-\tan-x-\cos-2x,$$---$$x-\neq-(2n-+-1)90^\circ,-\-n-\in-\mathbb{Z}$$--(b)-Given-that---$$x-\neq-90^\circ-\text{-and-}-x-\neq-270^\circ,$$-solve,-for-$$0-\leq-x-<-360^\circ,$$----$$\sin-2x---\tan-x-=-3-\tan-x-\sin-x.$$----Give-your-answers-in-degrees-to-one-decimal-place-where-appropriate-Edexcel-A-Level Maths Pure-Question 9-2017-Paper 4.png

9. (a) Prove that $$\sin 2x - \tan x = \tan x \cos 2x,$$ $$x \neq (2n + 1)90^\circ, \ n \in \mathbb{Z}$$ (b) Given that $$x \neq 90^\circ \text{ and } x \neq 2... show full transcript

Worked Solution & Example Answer:9. (a) Prove that $$\sin 2x - \tan x = \tan x \cos 2x,$$ $$x \neq (2n + 1)90^\circ, \ n \in \mathbb{Z}$$ (b) Given that $$x \neq 90^\circ \text{ and } x \neq 270^\circ,$$ solve, for $$0 \leq x < 360^\circ,$$ $$\sin 2x - \tan x = 3 \tan x \sin x.$$ Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 9 - 2017 - Paper 4

Step 1

Prove that $$\sin 2x - \tan x = \tan x \cos 2x$$

96%

114 rated

Answer

To prove the identity, we start with the left-hand side:

sin2xtanx=2sinxcosxsinxcosx.\sin 2x - \tan x = 2 \sin x \cos x - \frac{\sin x}{\cos x}.

Next, combine these terms over a common denominator:

=2sinxcos2xsinxcosx=sinx(2cos2x1)cosx.= \frac{2 \sin x \cos^2 x - \sin x}{\cos x} = \frac{\sin x (2 \cos^2 x - 1)}{\cos x}.

Using the identity cos2x=2cos2x1\cos 2x = 2 \cos^2 x - 1 gives us:

=sinxcos2xcosx=tanxcos2x= \frac{\sin x \cos 2x}{\cos x} = \tan x \cos 2x as required.

Thus, we have shown that sin2xtanx=tanxcos2x\sin 2x - \tan x = \tan x \cos 2x when x(2n+1)90x \neq (2n + 1)90^\circ.

Step 2

Given that $$x \neq 90^\circ$$ and $$x \neq 270^\circ$$, solve for $$0 \leq x < 360^\circ$$

99%

104 rated

Answer

Starting from the equation:

sin2xtanx=3tanxsinx,\sin 2x - \tan x = 3 \tan x \sin x,

we rearrange it to:

sin2x4tanxsinx=0.\sin 2x - 4 \tan x \sin x = 0.

We know that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. Substituting yields:

2sinxcosx4tanxsinx=0,2 \sin x \cos x - 4 \tan x \sin x = 0,

which simplifies to:

2sinx(cosx2tanx)=0.2 \sin x (\cos x - 2 \tan x) = 0.

This gives us two cases:

  1. sinx=0\sin x = 0 leads to x=0,180x = 0^\circ, 180^\circ.
  2. cosx2tanx=0.\cos x - 2 \tan x = 0.

Solving for tanx\tan x gives:

cosx=2tanxcos2x=2sinxcosx.\cos x = 2 \tan x \Rightarrow \cos^2 x = 2 \sin x\cos x.

Thus,

cos2x=2textandtextusingthePythagoreanidentitysin2x+cos2x=1,\cos^2 x = 2 \\text{ and } \\text{ using the Pythagorean identity } \\sin^2 x + \cos^2 x = 1,

results in a restriction in possible values for xx leading to additional solutions of approximately: x163.7,16.3x \approx 163.7^\circ, 16.3^\circ.

So our final solutions are: x=0,16.3,163.7,180x = 0^\circ, 16.3^\circ, 163.7^\circ, 180^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;