Photo AI

6. (i) Using the identity for tan(A ± B), solve, for −90° < x < 90°, tan 2x + tan 32° 1 − tan 2x tan 32° = 5 Give your answers, in degrees, to 2 decimal places - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Question icon

Question 8

6.-(i)-Using-the-identity-for-tan(A-±-B),-solve,-for-−90°-<-x-<-90°,---tan-2x-+-tan-32°---1-−-tan-2x-tan-32°-=-5---Give-your-answers,-in-degrees,-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 8-2018-Paper 5.png

6. (i) Using the identity for tan(A ± B), solve, for −90° < x < 90°, tan 2x + tan 32° 1 − tan 2x tan 32° = 5 Give your answers, in degrees, to 2 decimal places... show full transcript

Worked Solution & Example Answer:6. (i) Using the identity for tan(A ± B), solve, for −90° < x < 90°, tan 2x + tan 32° 1 − tan 2x tan 32° = 5 Give your answers, in degrees, to 2 decimal places - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Step 1

Using the identity for tan(A ± B), solve, for −90° < x < 90°

96%

114 rated

Answer

To solve the equation

tan2x+tan32°=5(1tan2xtan32°)\tan 2x + \tan 32° = 5(1 − \tan 2x \tan 32°)

we first rearrange it to:

tan2x+tan32°=55tan2xtan32°\tan 2x + \tan 32° = 5 − 5 \tan 2x \tan 32°

which gives:

tan2x(1+5tan32°)=5tan32°\tan 2x (1 + 5 \tan 32°) = 5 − \tan 32°

This enables us to solve for \tan 2x:

tan2x=5tan32°1+5tan32°\tan 2x = \frac{5 − \tan 32°}{1 + 5 \tan 32°}

Next, we calculate \tan 32° ≈ 0.6249. Substituting this value in, we get:

tan2x50.62491+50.62494.37514.12451.061\tan 2x ≈ \frac{5 − 0.6249}{1 + 5 \cdot 0.6249} ≈ \frac{4.3751}{4.1245} ≈ 1.061

Thus, finding \arctan(1.061) yields:

2xarctan(1.061)46.4°2x ≈ \arctan(1.061) \approx 46.4°

Consequently, we find:

x23.2° or x66.7°(notvalidintherange)x ≈ 23.2° \text{ or } x ≈ -66.7° (not valid in the range)

Step 2

Using the identity for tan(A ± B), show that

99%

104 rated

Answer

We start with the equation:

tan(30°45°)=tan(30°)11+tan(30°)\tan(30° − 45°) = \frac{\tan(30°) − 1}{1 + \tan(30°)}

First, we know that:\n\tan(30°) = \frac{1}{\sqrt{3}} ≈ 0.5774. Then substituting this into the equation gives us:

tan(30°45°)=0.577411+0.5774=0.42261.5774=0.2686\tan(30° − 45°) = \frac{0.5774 − 1}{1 + 0.5774} = \frac{-0.4226}{1.5774} = -0.2686

Thus, we can confirm:

tan(15°)0.2679 (approximately equal)\tan(-15°) ≈ -0.2679 \text{ (approximately equal)}

From this, we state that θ ≠ (60n + 45)°, where n ∈ ℤ.

Step 3

Hence solve, for 0 < θ < 180°

96%

101 rated

Answer

Starting from the equation:

(1+tan(30°))(tan(θ+28°)=tan30°1(1 + \tan(30°))(\tan(θ + 28°) = \tan 30° − 1

Substituting \tan(30°) ≈ 0.5774 yields:

(1+0.5774)(tan(θ+28°)=0.57741(1 + 0.5774)(\tan(θ + 28°) = 0.5774 − 1

This simplifies to:

(1.5774)(tan(θ+28°))=0.4226(1.5774)(\tan(θ + 28°)) = -0.4226

Let's derive \tan(θ + 28°):

tan(θ+28°)=0.42261.57740.268\tan(θ + 28°) = \frac{-0.4226}{1.5774} ≈ -0.268

Next, we find:

θ+28°=tan1(0.268)θ + 28° = \tan^{-1}(-0.268)

This gives us two solutions:

θ+28°180°15°+kimes180°ext(wherekZ)θ + 28° ≈ 180° - 15° + k imes 180° ext{ (where k ∈ ℤ)}

Solving for θ in the valid range gives:

θ13°extorθ126.5°θ ≈ -13° ext{ or } θ ≈ 126.5°

The only valid solution for 0 < θ < 180° is θ ≈ 126.5°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;