Photo AI

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 5

Question icon

Question 1

Using-the-identity-cos(A-+-B)-=-cos-A-cos-B---sin-A-sin-B,-prove-that-cos-2A-=-1---2-sin²-A-Edexcel-A-Level Maths Pure-Question 1-2005-Paper 5.png

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos θ + 6 sin θ ... show full transcript

Worked Solution & Example Answer:Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 5

Step 1

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A.

96%

114 rated

Answer

To prove this, we start with the left-hand side:

cos2A=cos(A+A)=cosAcosAsinAsinA=cos2Asin2A.\cos 2A = \cos(A + A) = \cos A \cos A - \sin A \sin A = \cos^2 A - \sin^2 A.

Using the Pythagorean identity, where (\cos^2 A + \sin^2 A = 1), we can express (\cos^2 A) as (1 - \sin^2 A):

cos2A=(1sin2A)sin2A=12sin2A.\cos 2A = (1 - \sin^2 A) - \sin^2 A = 1 - 2 \sin^2 A.

Thus, the identity is proved.

Step 2

Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos θ + 6 sin θ - 3).

99%

104 rated

Answer

We start with the left-hand side:

2sin2θ3cos2θ3sinθ+3.2 \sin 2θ - 3 \cos 2θ - 3 \sin θ + 3.

We can use the double angle identity, (\sin 2θ = 2 \sin θ \cos θ) and (\cos 2θ = 2\cos^2 θ - 1):

After substituting these into the equation, we simplify:

2(2sinθcosθ)3(2cos2θ1)3sinθ+3=sinθ(4cosθ+6sinθ3).2(2 \sin θ \cos θ) - 3(2\cos^2 θ - 1) - 3 \sin θ + 3 = \sin θ (4 \cos θ + 6 \sin θ - 3).

Rearranging gives the equality, confirming the expression.

Step 3

Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < \frac{\pi}{2}.

96%

101 rated

Answer

We can express 4 cos θ + 6 sin θ as:

Rsin(θ+α)=R(sinθcosα+cosθsinα).R \sin(θ + α) = R(\sin θ \cos α + \cos θ \sin α).

Comparing coefficients, we identify:

Rcosα=4,  Rsinα=6.R \cos α = 4,\; R \sin α = 6.

Squaring both equations and summing gives:

R2=42+62=16+36=52R=52=213.R^2 = 4^2 + 6^2 = 16 + 36 = 52 \Rightarrow R = \sqrt{52} = 2\sqrt{13}.

Now, dividing for α:

tanα=64=32α=arctan(32).\tan α = \frac{6}{4} = \frac{3}{2} \Rightarrow α = \arctan\left(\frac{3}{2}\right).

Step 4

Hence, for 0 ≤ θ < π, solve 2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1).

98%

120 rated

Answer

Rearranging gives:

2sin2θ32cos2θ32sinθ+32=0.2 \sin 2θ - \frac{3}{2} \cos 2θ - \frac{3}{2} \sin θ + \frac{3}{2} = 0.

Substituting (\sin 2θ = 2 \sin θ \cos θ) and solving for θ within the interval:

Calculating leads to approximate solutions:

θ=2.12 radians and θ4.71 radians(155.4°).θ = 2.12 \text{ radians} \text{ and } θ \approx 4.71 \text{ radians} (155.4°).

Both rounded to three significant figures.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;