Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 5
Question 1
Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A.
Show that
2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos θ + 6 sin θ ... show full transcript
Worked Solution & Example Answer:Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 5
Step 1
Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove this, we start with the left-hand side:
cos2A=cos(A+A)=cosAcosA−sinAsinA=cos2A−sin2A.
Using the Pythagorean identity, where (\cos^2 A + \sin^2 A = 1), we can express (\cos^2 A) as (1 - \sin^2 A):
cos2A=(1−sin2A)−sin2A=1−2sin2A.
Thus, the identity is proved.
Step 2
Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ (4 cos θ + 6 sin θ - 3).
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We start with the left-hand side:
2sin2θ−3cos2θ−3sinθ+3.
We can use the double angle identity, (\sin 2θ = 2 \sin θ \cos θ) and (\cos 2θ = 2\cos^2 θ - 1):
After substituting these into the equation, we simplify: